Managing Osteoporosis in Patients on Long-Term Bisphosphonate Treatment: Report of a Task Force of the American Society for Bone and Mineral Research

Robert A Adler,1 Ghada El-Hajj Fuleihan,2 Douglas C Bauer,3 Pauline M Camacho,4 Bart L Clarke,5 Gregory A Clines,6 Juliet E Compston,7 Matthew T Drake,5 Beatrice J Edwards,8 Murray J Favus,9 Susan L Greenspan,10 Ross McKinney Jr,11 Robert J Pignolo,12 and Deborah E Sellmeyer13

1McGuire Veterans Affairs Medical Center and Virginia Commonwealth University School of Medicine, Richmond, VA, USA
2American University of Beirut Medical Center, Beirut, Lebanon
3University of California, San Francisco, San Francisco, CA, USA
4Loyola University of Chicago, Maywood, IL, USA
5Mayo Clinic College of Medicine, Rochester, MN, USA
6University of Michigan, Ann Arbor, MI, USA
7University of Cambridge School of Clinical Medicine, Cambridge, UK
8MD Anderson Cancer Center, Houston, TX, USA
9University of Chicago, Chicago, IL, USA
10University of Pittsburgh, Pittsburgh, PA, USA
11Duke University School of Medicine, Durham, NC, USA
12University of Pennsylvania, Philadelphia, PA, USA
13The Johns Hopkins Bayview Medical Center, Baltimore, MD, USA

ABSTRACT
Bisphosphonates (BPs) are the most commonly used medications for osteoporosis. This ASBMR report provides guidance on BP therapy duration with a risk-benefit perspective. Two trials provided evidence for long-term BP use. In the Fracture Intervention Trial Long-term Extension (FLEX), postmenopausal women receiving alendronate for 10 years had fewer clinical vertebral fractures than those switched to placebo after 5 years. In the HORIZON extension, women who received 6 annual infusions of zoledronic acid had fewer morphometric vertebral fractures compared with those switched to placebo after 3 years. Low hip T-score, between −2 and −2.5 in FLEX and below −2.5 in HORIZON extension, predicted a beneficial response to continued therapy. Hence, the Task Force suggests that after 5 years of oral BP or 3 years of intravenous BP, reassessment of risk should be considered. In women at high risk, for example, older women, those with a low hip T-score or high fracture risk score, those with previous major osteoporotic fracture, or who fracture on therapy, continuation of treatment for up to 10 years (oral) or 6 years (intravenous), with periodic evaluation, should be considered. The risk of atypical femoral fracture, but not osteonecrosis of the jaw, clearly increases with BP therapy duration, but such rare events are outweighed by vertebral fracture risk reduction in high-risk patients. For women not at high fracture risk after 3 to 5 years of BP treatment, a drug holiday of 2 to 3 years can be considered. The suggested approach for long-term BP use is based on limited evidence, only for vertebral fracture reduction, in mostly white postmenopausal women, and does not replace the need for clinical judgment. It may be applicable to men and patients with glucocorticoid-induced osteoporosis, with some adaptations. It is unlikely that future trials will provide data for formulating definitive recommendations. © 2015 American Society for Bone and Mineral Research.

KEY WORDS: BISPHOSPHONATES; LONG TERM-BISPHOSPHONATE USE; RISK BENEFIT; DRUG HOLIDAY; OTHER OSTEOPOROSIS THERAPIES

Introduction
A fracture owing to osteoporosis occurs every 3 seconds around the world, with the hallmark fractures at the spine and hip leading to substantial mortality, morbidity, and huge societal costs worldwide.1,2 One in three older women and one in five older men will experience a fragility fracture after age 50 years. Solid evidence from randomized placebo-controlled trials of 3 to 4 years’ duration supports the efficacy of amino-bisphosphonates (BPs) in decreasing the risk of vertebral...
fractures (by 40% to 70%), hip fractures (by 20% to 50%), and nonvertebral fractures (by 15% to 39%), depending on the drug, skeletal site, and individual risk profile. These drugs have, therefore, dominated the landscape of osteoporosis therapies for the last two decades. They are approved by the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for the treatment of postmenopausal, glucocorticoid-induced, and male osteoporosis. Between 2005 and 2009, approximately 150 million prescriptions were dispensed in the United States (US) for the oral BPs alendronate (ALN), risedronate (RIS), or ibandronate (IBN), and 5.1 million patients over the age of 55 years received a prescription for these drugs in 2008. Extension trials have suggested efficacy of prolonged BP therapy in maintaining bone density for up to 10 years with ALN,(4,5) 7 years with RIS,(6) and 6 years with zoledronic acid (ZOL),(7) but evidence regarding fracture risk reduction with prolonged therapy is less convincing.

However, less than a decade after the publication of the first pivotal clinical trial with ALN in 1995, reports regarding serious complications, potentially related to the cumulative intake of such drugs, began to appear in the literature. The most alarming to dentists and patients are osteonecrosis of the jaw (ONJ), first reported by dentists and oral surgeons in 2003, occurring much more commonly in cancer patients receiving higher cumulative doses of BPs than in patients with osteoporosis treated with lower doses, and atypical femoral fractures (AFFs), first reported in 2005. Many subsequent publications have appeared on both conditions, including three major reports from American Society for Bone and Mineral Research (ASBMR) Task Forces.(8-10) Although ONJ was first described more than 160 years ago, its association with the intake of BPs was new, and it was observed to occur more commonly in the setting of cancer treatment in which high doses of intravenous BPs are used. AFFs can occur in patients not receiving any antifracture medications; they account for about 1% of all femoral fractures(11,12) and about 3% of all femoral shaft fractures.(13) The incidence of AFFs seems to increase in patients taking long-term BPs for osteoporosis. This led the FDA to request information from all BP drug manufacturers regarding this potential safety signal and to assess long-term efficacy.(14) On October 13, 2010, the FDA reviewed all available data, including data summarized in the ASBMR Task Force initial report on Atypical Subtrochanteric and Diaphyseal Femoral Fractures,(10) and determined that new “Warnings and Precautions” information regarding the risk of AFFs should be added to the labels of all BP products approved for the prevention or treatment of osteoporosis. In September 2011, the FDA held a hearing to review the long-term safety and efficacy of BPs, and subsequently recommended that physicians reassess the indication for continued BP therapy beyond 3 to 5 years,(14,15) but noted that in high-risk patients, drug discontinuation may not be advisable. Currently, all FDA approvals of BPs for the treatment of osteoporosis contain the following “Important Limitation of Use” statement: “The optimal duration of use has not been determined. All patients on BP therapy should have the need for continued therapy re-evaluated on a periodic basis.”(16) With additional reports, the association between BPs and AFFs has become more compelling. In its second report on Atypical Subtrochanteric and Diaphyseal Femoral Fractures,(9) the ASBMR Task Force revised the original case definition of AFFs, summarized the updated relevant literature, and underscored the significant association with BP use, although with differing strengths and magnitude. Although the relative risk for BP use varied widely (between 2- and 128-fold), the absolute risk was consistently low, ranging between 3.2 to 50 cases/100,000 person-years, an estimate that appeared to double with prolonged duration of BP use (>3 years, median duration 7 years), and seemed to decline with discontinuation. The incidence of ONJ in patients with osteoporosis is estimated to be between 1/10,000 and 1/100,000, and is only slightly higher than the ONJ incidence in the general population.(8,17) Collectively, however, these rare yet serious harmful events have received wide coverage in the media and have resulted in perceived risks by the public that may be out of proportion to the absolute risks, leading patients to not fill or refill prescriptions for these drugs. Such behavior is likely to result in fractures that could have been prevented, given that patients need to take at least 75% of doses in order to prevent fractures.(18)

The persistent effect of BPs on bone, albeit with differing temporal resolution upon discontinuation because of differential avidity to bone,(19) coupled with concerns regarding perceived harms from such therapy, led to the concept of a drug holiday. The drug holiday is designed to minimize side effects and maximize benefits and is an approach that has been successfully applied in other chronic disease states, such as rheumatoid arthritis and Parkinson’s disease.(20,21) Organizations have provided guidance regarding the risks and benefit of BP drug holidays in individuals who have received BPs for 3 to 5 years. The American Association of Clinical Endocrinologists (AACE) guideline suggests a drug holiday after 4 to 5 years of BP treatment in patients at moderate risk of fractures and after 10 years for high-risk patients, but the terms high and moderate risk were not defined.(22) The National Osteoporosis Guideline Group (NOGG) in the UK developed a care path algorithm that suggests a drug holiday in individuals who have no history of fracture, whose FRAX risk falls below the NOGG intervention threshold, and whose hip bone mineral density (BMD) T-score is above –2.5; in such patients, repeating FRAX with BMD in 1.5 to 3 years was recommended.(23) In 2013, in response to increasing concerns about prolonged BP therapy in osteoporosis patients, ASBMR leadership convened a multidisciplinary international task force on Managing Osteoporosis Patients after Long-Term Bisphosphonate Treatment. Experts in osteoporosis management, epidemiology, endocrinology, geriatrics, and drug surveillance were appointed to the Task Force. A bone scientist not in the osteoporosis field and an ethicist were also members of the Task Force. Task Force members were vetted by the ASBMR Ethics Committee and approved by the ASBMR Executive Committee,(24) Task Force member conflicts of interest are listed in the Disclosures section.

Charges to the Task Force

The main charges were determined by the ASBMR Professional Practice Committee, approved by Council, and subsequently modified by Task Force members to follow complementary themes and facilitate work amongst members. These were to:

- Provide guidance on duration of BP therapy in patients with postmenopausal osteoporosis, developing an algorithm that incorporates risk assessment (efficacy).
- Determine how potential harms may affect duration of therapy (safety), with a risk/benefit perspective.
- Discuss how the algorithm may apply to men and to individuals with glucocorticoid-induced osteoporosis.
Additional relevant points, namely risk factors for harms, resolution of benefits and harms upon BP discontinuation, monitoring on and off therapy, differential effects and costs of BPs, and alternative therapies, were also to be reviewed. In light of the limited evidence available, the task force developed a suggested approach, rather than an algorithm. Case studies were also included to illustrate the applicability of the suggested approach to challenging clinical cases, where available evidence falls short of providing strong guidance and recommendations, and are discussed in Supplemental Appendix S1.

Details regarding the original and modified charges can be found in Supplemental Appendix S2.

Materials and Methods

Methodology for the literature search

Three parallel systematic literature searches were implemented on the following terms: randomized controlled trials with long-term bisphosphonates, bisphosphonates and drug holidays, and bisphosphonates and guidelines. The databases searched included Ovid Medline, EmbASE, Cochrane, and PubMed. The three searches were conducted, conducted with input and oversight from an expert medical librarian, and implemented by a research assistant at the American University of Beirut under supervision of one of the Task Force co-chairs (GE-HF). A detailed description of the search strategy and its yield is found in Supplemental Appendix 3.

Task Force process

The Task Force met by multiple teleconferences and emails, in addition to two face-to-face meetings. Two subgroups were formed, one charged with assessing BP effectiveness over time and the other BP safety. By consensus, the first subgroup constructed a figure illustrating the essential findings and recommendations of the Task Force. The second subgroup addressed side effects of BP therapy, constructing a figure relating the probability of serious adverse outcomes with osteoporotic fracture risk and other serious life events. It also reviewed risks of alternative therapies to BPs. The Task Force co-chairs wrote the first and subsequent drafts of the manuscript with input from all members, who provided sections to address specific questions raised during the teleconferences. The figure and text underwent multiple revisions based on e-mails and discussions and were circulated to all Task Force members. The entire Task Force unanimously approved the final report.

Evidence for Long-Term BP Treatment of Osteoporosis Extension Studies Using BPs

Pivotal registration trials have unequivocally demonstrated the antifracture efficacy of commonly used BPs, namely ALN, RIS, ZOL, and IBN.\(^{(6,25–31)}\) Fracture reduction for vertebral, non-vertebral, and hip fractures has been established for the first three, and hip fracture was a primary outcome only for the RIS and ZOL trials.\(^{(26,30)}\) The long-term efficacy of these BPs in extension studies is primarily based on trials conducted in a subset of trial participants and focused primarily on bone density changes. In these studies, subjects were rerandomized (after a 1- to 2-year period of open-label ALN in FLEX), and fracture reduction was evaluated as an exploratory outcome. IBN was not studied beyond 5 years,\(^{(32)}\) and the extension study for RIS had no placebo group and only included a small number of subjects followed for up to 7 years (\(N = 74\)).\(^{(6)}\) Additional details on currently used BPs are provided under the section below entitled “Differences among bisphosphonates.” Therefore, evidence supporting long-term BP therapy beyond 5 years is derived from two randomized, double-blind discontinuation trials conducted in the US and Europe, with ALN (FLEX study) and ZOL (HORIZON extension study).

The FLEX study was an extension of the ALN Fracture Intervention Trial (FIT), including both of its substudies, the Vertebral Fracture Arm\(^{(25)}\) and the Clinical Fracture Arm.\(^{(33)}\) The extension study randomized 1099 postmenopausal women who had already received 4 to 5 years of oral ALN, 5 to 10 mg/d, including up to 1 year open-label ALN (10 mg/d), to either continue ALN 5 mg (\(n = 321\)), 10 mg (\(n = 322\)), or switch to placebo (\(n = 428\))\(^{(6,34)}\) (Supplemental Appendix S4A-McNabb 2013 Fig. 1 for study flow). All women also received 500 mg of calcium and 250 IU of vitamin D3 daily.

At entry into the extension study, the mean age was 73 (±5.7) years, and more than 96% were white. The mean total hip T-score was −1.9 and the mean femoral neck T-score was −2.2. Importantly, women with a total hip BMD T-score < −3.5 or whose total hip BMD was lower than at FIT baseline were excluded from the extension. Sixty percent of women had a history of clinical fracture after age 45 years, and one-third had already suffered a vertebral fracture. The primary endpoint was the change in femoral neck BMD; secondary measures were BMD at other sites and bone turnover markers. Fracture incidence was an exploratory objective, captured as adjudicated vertebral and nonvertebral fractures, as done in FIT. Morphometric vertebral fractures were ascertained through lateral radiographs, obtained at entry and after 36 and 60 months of the extension. A semiquantitative method was used, and mild fractures (20% height loss) were included.

After an additional 5 years of follow-up, those who continued on ALN (5 or 10 mg, \(N = 662\)) had significantly less bone loss at all skeletal sites (for example, femoral neck BMD change by dual-energy X-ray absorptiometry (DXA) was 0.46% in combined ALN versus −1.48% in placebo, \(p < 0.001\)), and fewer clinical vertebral fractures (RR = 0.45, 95% confidence interval (CI) 0.24–0.85) compared with those who were switched to placebo, \(N = 437\).\(^{(40)}\) (see Supplemental Appendix S4A, Black 2006, Table 3). However, nonspine fracture risk was similar among those who continued ALN for approximately 10 years compared with women who received 5 years of ALN followed by 5 years of placebo (RR = 1.00, 95% CI 0.76–1.32), but the study did not have adequate statistical power to detect differences in nonvertebral fractures. There was no significant reduction in morphometric vertebral fractures with continued therapy beyond 5 years (RR = 0.86, 95% CI 0.60–1.22).\(^{(40)}\) (Supplemental Appendix S4A, Black 2006, Table 3 provides details regarding number of subjects and fractures in each arm, by fracture type). Further analyses for risk stratification in the FLEX trial are discussed in the section below entitled “Risk stratification from the alendronate and zoledronic acid extension studies,” and illustrated in the rest of Supplemental Appendix S4A.

In the HORIZON study extension, 1233 postmenopausal women who had already received three annual iv infusions of ZOL 5 mg were randomized to either continue yearly ZOL (Z6) for an additional 3 years or switch to placebo (Z3P3) in a blinded manner. All women received 1000 to 1500 mg of oral calcium
and 400 to 1200 IU of vitamin D daily. The mean age was 75.5 (±5) years, more than 95% were from primarily Western populations, and 5% were Asians. The subjects had a mean total femoral neck T-score > -2.6 (±0.6); women over age 93 years or on other bone active drugs were excluded. Approximately 60% of the women had at least one prevalent vertebral fracture at entry into the extension. The primary endpoint was percent change in femoral neck BMD between the two arms; secondary endpoints included BMD at other sites, fractures, bone turnover markers, and safety. Clinical fractures were identified similarly to the core study, self-reported with central adjudication. The incidence of morphometric fractures was assessed by comparison of radiographs at 3 years and 6 years.

Subjects randomized to the Z3P3 arm had significantly greater femoral neck bone loss (Δ-0.80 versus 0.24 %; p = 0.0009), and those in the Z6 arm had fewer morphometric spine fractures (RR = 0.51, 95% CI 0.26–0.95; p = 0.035) (Supplemental Appendix S4B, Black JBMR 2012, Fig. 4). However, nonspine fracture risk did not differ among those who did and did not continue ZOL (RR = 0.99, 95% CI 0.7–1.5), and the same applied to hip fractures. This may be explained by low statistical power as shown in Supplemental Appendix S4B, Black JBMR 2012, where Fig. 4 provides details regarding number of subjects and fractures in each arm, by fracture type. Further analyses for risk stratification in this trial extension are discussed in the section below entitled “Risk stratification from the alendronate and zoledronic acid extension studies,” and illustrated in the rest of Supplemental Appendix S4B.

Differences Among Bisphosphonates

Persistence of beneficial effects of BPs

Elevated bone turnover markers (BTMs) have been associated with low BMD and increased fracture risk in untreated post-menopausal women. In pivotal studies of BPs, a significant decrease in BTMs has been demonstrated. Persistence of low BTMs may be a potential indication of continued beneficial effects after discontinuation of long-term BP use. Withdrawal of BP treatment is associated with decreases in BMD and increases in BTMs, changes that differ among BPs. Based on these criteria, residual effects on BMD from ALN persist for 2 to 3 years and possibly 1 to 2 years for IBN and RIS. In the case of 3 years of ZOL therapy, they extend for at least another 3 years. These findings are consistent with the relative binding affinities of BPs for hydroxyapatite and human bone tissue.

Cost and convenience

Oral BPs are most frequently prescribed in part because of their low cost and convenience, and the costs of ALN, RIS, and IBN were found to be similar in a 2011 study. Generic ALN, RIS, and IBN are now available in many countries worldwide. The availability of generic BPs may alter total health care costs. ZOL may also be a cost-effective first-line option compared with other branded BPs and, in some cases, even in comparison with generic ALN; however, these comparisons are limited by a paucity of compliance and persistence data, as well as by incomplete country-specific data. Generic ZOL became available in the US in 2013 and in the UK in 2014, which may also change previous cost-effective analyses. Cost and availability of generic BPs vary among countries.

Adherence

Adherence to osteoporosis therapies is essential to treatment efficacy, even with BPs, despite their long bone retention. Better adherence to BP therapy is associated with larger increases in BMD and — when exceeding 75% — with lower rates of fracture. A meta-analysis of 171,063 subjects followed for 1 to 2.5 years revealed a 46% increased fracture risk in noncompliant subjects versus compliant ones. However, adherence is a major problem with currently available oral anti-osteoporosis therapies, with less than 50% of those starting oral BPs continuing them for more than 1 year. Major determinants of adherence to oral BPs are comorbidities and health plan costs. Reasons for discontinuation include side effects, concern about side effects, poor understanding of benefits, inconvenience, and use of multiple medications. Persistence with intravenous BPs is not far superior to oral drugs, including the once yearly regimen. In a random sample of 5% of new users of IV ZOL in the Medicare database (N = 846), 30% did not receive a second infusion. Older age and receiving the infusion in a separate outpatient infusion center as opposed to a physician office predicted low adherence. To date, evidence to establish superiority of intravenous versus oral BP is scarce and limited to short follow-up. Patients with poorer adherence are expected to experience fewer serious adverse events such as ONJ and AFF. Adherence is an equally important consideration in patients being switched from one osteoporosis therapy to another (see below).

Risk Stratification From the Alendronate and Zoledronic Acid Extension Studies

In an attempt to identify subgroups of subjects who may benefit most from longer-term therapy, investigators from both extension trials performed additional post hoc analyses.

Potential risk stratification by BMD and prevalent or incident fractures

In the FLEX study, there was no significant effect of low BMD (stratified into three categories), nor of prevalent fractures, on the reduction in nonvertebral and clinical vertebral fracture with continued ALN versus placebo (N = 10 subgroup comparisons), the only exception being a reduction in clinical vertebral fractures in subjects with femoral neck T-score between -2 and -2.5 (RR = 0.22, 95% CI 0.05–0.74) (Supplemental Appendix S4A, Black 2006, Table 4). However, in these analyses, the subgroups categorized by T-scores may have had prevalent vertebral fractures. Similarly, those with prevalent fractures may have had a wide range of BMD. Therefore, additional analyses were conducted to evaluate the effect of continued ALN for 10 years in FLEX women with or without previous vertebral fractures at entry into FLEX, stratified by BMD categories, on morphometric and nonspine fractures. Of a total of 12 subgroup analyses, the only significant finding was a reduction in nonspine fractures in women who did not have vertebral fractures and with femoral neck T-score ≤ -2.5 at FLEX baseline, who continued ALN for an additional 5 years compared with women who were switched to placebo (RR = 0.50; 95% CI 0.26–0.90) (see Supplemental Appendix S4A, Schwartz 2010, Table 2). Finally, in the most recent post hoc analyses from FLEX, both femoral neck and total hip T-scores, entered as tertiles at study extension, predicted the occurrence of any adverse events.
clinical fracture after ALN discontinuation in subjects randomized to placebo in extension, proportions increasing from less than 10% to 30% from highest to lowest tertile\(^{(57)}\) (Supplemental Appendix S4A, Bauer 2014, Fig. 2). Similarly, age (as a continuous variable) and hip BMD T-score (lowest versus other two tertiles), at time of ALN discontinuation, predicted clinical vertebral fractures during the subsequent 5 years\(^{(57)}\) (Supplemental Appendix S4A, Bauer JAMA Int Med 2014, Table 3).

In the HORIZON extension, additional analyses were performed to identify predictors of fractures in subjects who were randomized to placebo at 3 years.\(^{(58)}\) By univariate analysis, the incidence of morphometric vertebral fractures in the Z3P3 group was predicted by femoral neck and total hip T-score \(<-2.5\)\(^{(58)}\) (Supplemental Appendix S4B, Cosman 2014, Fig. 1). The odds ratio (OR) for femoral neck T-score \(<-2.5\) was 3.3 (CI 1.4–8), for total hip T-score \(<-2.5\), 4.0 (CI 1.8–8.9), and for incident morphometric fractures during the core study, 4.8 (CI 1.4–16.8)\(^{(58)}\) (Supplemental Appendix S4B, Cosman 2014, Table 2). Similarly, the incidence of nonvertebral fractures was predicted by total hip T-score as a continuous but not categorical variable, prevalent vertebral fracture hazard ratio (HR) = 3.0 (CI 1.4–6.3)), and incident nonvertebral fractures during the core study (HR = 2.5 [CI 1.2–5.3])\(^{(58)}\) (Supplemental Appendix S4B, Cosman 2014, Table 3). Finally, neither age \(\geq 75\) years, nor weight \(< 60\) kg, when entered as single categorical variables, was predictive of new morphometric or nonvertebral fractures in the Z3P3 subjects. The absolute risk of morphometric vertebral fracture in subgroups defined by single or combined risk factors is shown in Supplemental Appendix S4B, Cosman 2014 Table 4.\(^{(58)}\) The absolute risk of such fracture remained low (3.1%) in women who only had one risk factor, eg, only a femoral neck BMD T-score \(<-2.5\).

In a second extension of the HORIZON trial, 190 women who had received six prior annual infusions of ZOL were rerandomized to three more infusions or three placebo infusions. There was no significant difference in the rate of bone loss between the women who received 9 years of ZOL compared with those who received six annual infusions followed by 3 years of placebo. There were few fractures during the second extension, and there was no difference in fracture rates between the two groups.\(^{(59)}\)

In summary, the extension studies reveal that 10 years of therapy with ALN and 6 years with ZOL prevented bone loss at multiple skeletal sites and a reduction in vertebral fractures compared with stopping ALN after 5 years or ZOL after 3 years. Subjects who seemed to benefit most from long-term ALN or ALN therapy are those categorized as high risk, best captured by a persistent low T-score at hip \(<-2.5\) in HORIZON for total hip or femoral neck T-score and above \(-2.5\) but \(<-2\) for femoral neck in FLEX), or incident fracture during the core study in HORIZON. However, the benefit in terms of fracture reduction was not entirely consistent across the two studies. Continued ALN resulted in a lower risk of clinical vertebral fractures, whereas ZOL resulted in a lower risk of morphometric vertebral fractures. The reason for this discrepancy is unclear, but possible factors include different baseline characteristics at entry into the extensions and in fracture incidence after treatment discontinuation. These data must be viewed with caution because of potential selection bias, small sample sizes, low numbers of fractures, the post hoc exploratory nature of many analyses, and lack of correction for multiple comparisons.

Based on these findings, continued BP therapy beyond 3 years with ZOL and beyond 5 years with ALN may be an option in high-risk individuals, based on evidence for reductions in the risk of vertebral fractures only. In lower-risk patients and in light of lack of evidence for fracture reduction with long-term therapy, discontinuation of treatment beyond 3 to 5 years, with monitoring, may be considered with periodic reassessment of fracture risk.

### Potential risk stratification by bone turnover markers

BTMs are affected by BP therapy and are potentially useful in determining fracture risk before and after therapy has commenced. The 2010 AACE Clinical Practice Guideline stated that BTMs may be used at baseline to identify patients with high bone turnover and can be used to follow the response to therapy, although this was supported only by Grade C level evidence.\(^{(59)}\) Recently, the International Osteoporosis Foundation (IOF) and the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) recommended serum procollagen type I N-terminal peptide (P1NP) to assess bone formation and serum C-terminal cross-linking telopeptide (CTX) to assess bone resorption.\(^{(60)}\)

Although the IOF and IFCC recommended the use of specific BTMs, it remains unclear how such BTMs should be used in clinical practice. Clinical studies have suggested their use as a primary fracture prediction tool, but many clinicians use BTMs to monitor osteoporosis treatment. A post hoc analysis of the Fracture Intervention Trial reported that greater reduction of serum P1NP, bone-specific alkaline phosphatase (BSAP), and CTX in ALN-treated subjects was positively associated with fewer vertebral fractures.\(^{(61)}\) Similar data were reported with RIS when reduction of markers was assessed by changes exceeding the least significant change,\(^{(62)}\) but not for ZOL when a discrete cut-off above or below the lower limit of premenopausal age was used.\(^{(63)}\)

The bone turnover markers CTX, PINP, and BSAP, measured in 76 women who took part in the FLEX trial, did not predict bone loss at the lumbar spine, total hip, or femoral neck over a 5-year treatment-free period in women who discontinued ALN after a mean of 5 years.\(^{(34)}\) Similarly, a change in BSAP or urinary NTX/Cr was not associated with fracture risk when measured 1 year after drug discontinuation in 437 study subjects.\(^{(57)}\) Fasting serum PINP, measured in 1140 women at entry in the HORIZON extension, was not a predictor of morphometric or nonvertebral fractures in the Z3P3 group.\(^{(58)}\) BTM changes reported in large groups of patients may not be observed in individuals because of the variability in BTM tests.

At this time, based on the limited evidence from FLEX and HORIZON extension studies, there is no evidence to support the measurement of BTMs to assess fracture risk after long-term BP use or in offset periods. However, some experts use BTMs to determine whether a continued BP is still exerting its effects and resume therapy when they exceed the lower half of the premenopausal range. This approach is based on the evidence that maintenance of BTMs in the lower range is associated with lower risk of fracture and the rationale that such observations can be extended to patients who discontinue BPs after long-term therapy.\(^{(60)}\)

### Potential risk stratification by fracture risk calculators, age, and weight

For untreated patients, fracture risk calculators have been developed to identify individuals who may not have osteoporosis by DXA but are at high fracture risk nonetheless. The
algorithm-based calculators that have been validated in at least one independent cohort from the original derivation cohort are the World Health Organization FRAX tool, the Garvan Risk Calculator, and the QResearch Database Qfracture.\(^\text{(64)}\) To date, FRAX has been incorporated in some national osteoporosis guidelines and care pathways, but the evidence for its usefulness in treated patients is limited. In one study using the Manitoba database,\(^\text{(65)}\) Leslie and colleagues demonstrated that FRAX scores in patients on osteoporosis therapies predicted 10-year risk of major osteoporotic fractures and hip fractures, except for the subgroup of adherent patients at highest risk, where hip fracture risk was overestimated by 30%.\(^\text{(66)}\) The same authors also demonstrated in a subsequent publication that FRAX scores slowly increased over time. This increase was attenuated but not prevented by treatment, and a change in FRAX score on therapy did not independently predict incident fracture.\(^\text{(66)}\) This is not surprising because FRAX includes both age and femoral neck BMD, which will likely affect the FRAX calculation in opposite directions over time in the treated patient.

Age and body mass index (BMI) are two of the most powerful predictors of fractures in general and play a key role in FRAX. These factors were independently evaluated in the FLEX study, and although older age and low BMI were associated with bone loss at the spine and hip after discontinuation of ALN therapy in univariate analyses, no model based on these risk factors was able to predict bone loss rate in the adjusted analyses.\(^\text{(34)}\)

However, age and hip BMD at discontinuation predicted clinical fracture in the 5 years after discontinuation.\(^\text{(57)}\) In contrast, in the HORIZON extension study,\(^\text{(58)}\) neither age (≥75 years) nor weight (<60 kg) at entry into the extension or weight loss during the core trial was a predictor for the occurrence of morphometric vertebral or nonvertebral fractures in the group that discontinued ZOL after 3 years.

**Stopping Bisphosphonates and Restarting Therapy**

As described above, after 3 years of intravenous ZOL and 5 years of oral ALN treatment, high-risk postmenopausal white women, such as those with recent incident fracture in the HORIZON extension, or with low hip T-scores in both studies appeared to benefit the most from continued BP treatment. The evidence for this benefit is limited to reducing the risk of vertebral fractures, and data for other BPs are lacking. Furthermore, tools to identify subjects who will fracture when therapy is discontinued are limited. History and physical examination can provide information about additional clinical risk factors that may further increase fracture risk, such as older age, low BMI, weight loss, fall history, or the intake of drugs that have adverse effects on bone.

Attention to causes of secondary osteoporosis, calcium intake, and vitamin D levels may also affect response to therapy. Two observational studies suggest that the serum 25-hydroxyvitamin D level should be 30 ng/mL or more to ensure an adequate response to BPs.\(^\text{(67–69)}\) However, vitamin D status did not affect the bone density response to ALN in FIT.\(^\text{(67)}\)

After treatment for 5 years with ALN and 3 years with ZOL, in postmenopausal women who have a low fracture risk with a hip T-score higher than −2.5, discontinuation of BP therapy may be considered with reassessment at 2 to 3 years after discontinuation to determine risk. Patients treated with RIS may need earlier reassessment because of the shorter biologic half-life of this BP.\(^\text{(70)}\) Repeat DXA or BTM measurements may be considered during this “holiday,” but there are no data to guide the clinician regarding reinstitution of therapy because neither 1-year change in BMD nor 1-year change in BMTs predicted fractures post-BP discontinuation.\(^\text{(57)}\) It would be reasonable to consider withholding therapy as long as BMD is stable and to restart BP therapy (or an alternate osteoporosis medication) if the BMD T-score is ≤−2.5, or if other new/additional risk factors for fractures emerge. However, this approach is based on expert opinion. Furthermore, the use of a T-score cut-off of −2.5 for risk stratification and decision-making regarding therapy discontinuation is based on studies conducted almost exclusively in community-dwelling, postmenopausal white women. Although the relative risk for fracture/standard deviation decrease in BMD is best described by an inverse exponential relation that is similar across populations worldwide, the absolute fracture risk incurred by the same BMD T-score may be higher in more frail postmenopausal women and lower in some non-white populations than in white women.

**Safety of Bisphosphonates and Effect of Discontinuation on Adverse Events**

Although some side effects of BPs, such as gastrointestinal irritation and nephrotoxicity (see below), were recognized early as potential adverse effects, subsequent reports indicate that BP use may be associated with clinically serious but rare safety concerns, including osteonecrosis of the jaw (ONJ) and atypical femoral fractures (AFFs). These are not unique to BPs and have been reported with denosumab, another potent antiresorptive agent, and also occur in people who have not been treated with any of these agents.

**Osteonecrosis of the jaw (ONJ)**

ONJ was first associated with bisphosphonate therapy in a report in 2003, in patients with metastatic cancer receiving high-dose intravenous BP therapy. ONJ is characterized by 1) exposed necrotic bone in the maxillofacial region that has been present for at least 8 weeks of appropriate therapy; 2) exposure to potent antiresorptive agents (BPs or denosumab) or anti-angiogenic agents; and 3) no history of radiation therapy to the jaw.\(^\text{(71)}\) In one study,\(^\text{(72)}\) the incidence in patients not on BPs was 1/3000 patient-years. The pathogenesis of ONJ remains unclear,\(^\text{(17,73)}\) but several potential mechanisms, which are not necessarily mutually exclusive, have been proposed. These include over-suppression of bone remodeling, infection, inhibition of angiogenesis, soft tissue toxicity, and immune dysfunction. In patients receiving BP therapy for osteoporosis, current estimates of the incidence of ONJ range from approximately 1/10,000 to 1/100,000 patient treatment years.\(^\text{(8)}\) Potential factors increasing the risk for BP-treated patients to develop ONJ include poor oral hygiene, smoking, diabetes mellitus, comitant glucocorticoid and/or chemotherapy use, and invasive dental procedures, such as dental extractions or implants. The incidence may be higher in Asian populations, pointing to a genetic predisposition, as recently reported in Taiwanese subjects.\(^\text{(74)}\) For the vast majority of patients with osteoporosis treated with BPs who develop ONJ, the clinical course is mild and self-limited, and the condition can be treated conservatively.\(^\text{(8,17,75)}\) Preventive practices that may reduce the incidence of ONJ include prophylactic dental care and avoidance of invasive dental procedures. Detailed recommendations for management have
been provided by the ASBMR,(8) the American Dental Association,(75) the American Association of Oral and Maxillofacial Surgeons,(76) and the recently updated report of an International Task Force.(17) Although there appears to be a trend for an increased risk of ONJ with duration of BP use, the quality of the evidence for such association is poor.(17) A Drug Safety Update was just released by the Medicines and Healthcare Products Regulatory Agency regarding the risk of ONJ with intravenous BPs and denosumab.(77) Risk factors for ONJ may be included in the periodic reassessment of benefits and risks of BP therapy.(78)

Atypical femur fractures (AFFs)

The relationship between AFFs and BPs was first reported in 2005 in patients receiving oral BPs for osteoporosis.(10) In a large retrospective analyses of >1.8 million adults, including approximately 10% who had been treated with BPs, 142 AFFs were identified, including 128 in subjects with prior BP exposure.(11) These fractures usually occur with little or no antecedent trauma, are often preceded by thigh or groin pain, and may occur bilaterally.(10,79) Updated diagnostic criteria were published in 2014.(9) The diagnosis of AFF is based on subtrochanteric or femoral shaft location and the presence of at least 4 of 5 major criteria: minimal trauma, fracture originating at the lateral cortex and being substantially transverse, complete fractures extending through both cortices, localized periosteal or endosteal cortical thickening, and minimal comminution at most. Minor criteria are not required for the diagnosis but include increased cortical thickness of the femoral diaphysis, bilaterality, a prodrome of thigh or groin pain, and delayed fracture healing. In terms of incidence rates, some but not all studies suggest a duration response relationship, with a rise in age-adjusted incidence rates from 1.8/100,000 per year with a 2-year exposure to 113/100,000 per year with exposure from 8 to 9.9 years.(11) Such results strongly suggest that although a rare potential complication of BP use, AFF risk increases with prolonged duration of BP treatment and that this should be taken into consideration when continuing BPs beyond 5 years. However, it is important to note that for most patients treated for osteoporosis, the BP-associated benefit of reduced fracture risk beyond 5 years, albeit with evidence for vertebral fracture only, is greater than the risk of developing either ONJ or an AFF (Fig. 1). Based on the information provided in Fig. 1, it is possible to estimate benefits and risks for BP therapy for the first 5 years of therapy. For up to 5 years of BP therapy, approximately 175 hip fractures, 1470 vertebral fractures, and 945 wrist fractures would be averted (2590 total/100,000) for 16 AFFs/100,000 associated with treatment, for a total of 162 fractures of the spine, hip, or forearm prevented/AFF potentially caused. For years 5 to 10 of BP therapy, there are insufficient data to estimate the number of fractures averted by BPs because the only studies available were underpowered for fracture endpoints.

Other risk factors for AFF

Limited data exist regarding AFF risk factors other than BPs. Recently it has been postulated that a smaller femoral neck-shaft angle predisposes to AFF.(80) In addition, bowing of the femur may be associated with increased AFF risk.(81) Whether these or other patient characteristics can help determine the risk/benefit ratio for BP therapy duration is not established. Documented AFFs have also been described among individuals treated with denosumab, and the impact of duration of denosumab use on the risk of AFF remains undefined to date, in view of the rather limited data with long-term denosumab use.(82,83) An increased risk of AFF has been postulated in glucocorticoid and proton
pump inhibitor users, individuals with diabetes and rheumatoid arthritis, and individuals of Asian ancestry. In one study, many of the patients with AFF were younger, active women with osteopenia; it is possible that many were not at high risk for typical fracture.\(^{(84)}\)

Reports of AFF with denosumab therapy should be kept in mind when considering switching from BP to denosumab therapy, and a careful scrutiny of the relevant risk factors for AFF should be performed.\(^{(85)}\) Importantly, documented AFFs have also occurred in individuals without any history of antiresorptive therapy.

Other adverse events associated with BP therapy

Other potential adverse events have been reported to be increased in patients receiving BP therapy but are not included in this review because they are neither clearly related to BP use nor to therapy duration. These include esophageal cancer, atrial fibrillation, acute kidney injury, acute phase reaction (mostly noted after the first administration of an intravenous BP), musculoskeletal pain, and gastrointestinal intolerance. The strength of the association between BP use and atrial fibrillation and with esophageal carcinoma is weak at best.\(^{(86)}\) and the FDA has not ordered warnings for either atrial fibrillation or esophageal carcinoma in package inserts for oral BPs. It is usually possible to avoid renal injury by only using BPs in patients with a creatinine clearance \(> 30-35\text{ ml/min.}\(^{(87)}\)

Intravenous BPs can be used in those patients with gastrointestinal intolerance or contraindications to oral BPs.

**Side-Effect Risks after Stopping Bisphosphonate Treatment**

**Effect of bisphosphonate discontinuation (holiday) on AFF risk**

There are few data estimating the risk of AFF after stopping BPs. Of the 3 large cohort studies, only the Swedish study by Schilcher included information about the risk of AFF after stopping treatment.\(^{(12)}\) The risk fell by 70%\(/\text{year} since last BP use (odds ratio \[\text{OR} = 0.28, 95\% \text{ CI 0.21–0.38.}\) and the most dramatic reduction in risk occurred after the first year of discontinuation. Specifically, compared with those without BP exposure, the relative risk of confirmed AFF was 43 in the first year after discontinuation and 3.5 after the first year, but these analyses were based upon a total of 46 AFF events and only 4 AFFs occurred \(> 1\text{ year after discontinuation of BP.}\) The derived estimates may have been overestimated in view of short-term follow-up in this cohort.\(^{(13)}\)

**Effect of bisphosphonate discontinuation on ONJ risk**

Because of the long-terminal half-life of BPs, the American Dental Association\(^{(75)}\) and the American Association of Oral and Maxillofacial Surgeons\(^{(76)}\) do not recommend routine discontinuation of BP treatment for osteoporosis in most patients about to undergo invasive dental procedures. There are no studies of the incidence of ONJ in patients at different times after discontinuation of BP treatment for osteoporosis.

**Potential use of BTMs to determine safety risks**

The value of BTMs to predict which patients on long-term BPs are at risk for AFFs is unclear. Markedly suppressed bone turnover leading to an inability to repair skeletal microfractures, followed by propagation of these small fractures, has been proposed as the mechanism underlying AFFs.\(^{(9,10,88,89)}\) The second report of a task force convened by the ASBMR to examine atypical subtrochanteric and diaphyseal femur fractures identified published reports in which AFFs had been confirmed by radiologic review.\(^{(9)}\) Two small case series examined the association of BTMs with AFFs.\(^{(90,91)}\) Odvina and colleagues reported 9 patients with “spontaneous nonspinal fractures” on long-term (range 3 to 8 years) BPs. By dynamic histomorphometry, all had suppressed bone formation and 8 of 9 had low resorption. The correlation of bone histomorphometric parameters with BTMs was poor. Urine NTX was low to mid normal in 7 subjects, and although serum BSAP levels ranged widely, serum osteocalcin was low or at lower limit of the reference range at the time of bone biopsy.\(^{(90)}\) Visekruna and colleagues reported on 3 subjects who experienced spontaneous “minimal-trauma chalk-stick type metadiaphyseal femoral fractures” while on long-term BPs. Serum NTX was low in only one of the subjects.\(^{(91)}\) Similarly, both the American Dental Association recommendations\(^{(75)}\) and the American Association of Oral and Maxillofacial Surgeons\(^{(76)}\) conclude that measurement of BTMs does not help in the assessment of risk of ONJ in patients on BPs for osteoporosis.

**Bisphosphonate safety concerns in perspective with other medical and nonmedical safety issues**

To provide a perspective of the safety concerns associated with BP therapy, Fig. 1 illustrates the incidence of ONJ and AFF and that of typical osteoporotic fractures in various countries, as well as some other important outcomes and serious events. The age-standardized incidence rate of hip fractures (after age 50 years) is elevated across all continents.\(^{(92)}\) Among women in the US, the age-adjusted annualized rates for fracture greatly exceed that of other diseases in the elderly, such as heart attack (2-fold), breast cancer (4.7-fold), and stroke (8.5-fold).\(^{(93)}\) For other health outcomes, CDC outcome data are expressed as crude rates for pediatric injuries and murder.\(^{(94,95)}\) The risk of fractures is substantially decreased by BPs and remains much higher than that of developing risk of ONJ or AFF (Fig. 1).\(^{(11,72)}\) As a comparison, the risk of stroke is decreased by aspirin therapy, but the risk of intracerebral bleed is increased to a comparable degree.\(^{(96)}\)

**Management of adverse events related to bisphosphonates**

When ONJ or an AFF occurs in a patient on chronic BPs for osteoporosis, discontinuation of the BP is recommended.

The American Association of Oral and Maxillofacial Surgeons recommends treatments based on the stage of ONJ.\(^{(76)}\) Such treatment may include antibacterial mouth rinse, oral antibiotics, and surgical debridement. Good dental hygiene and patient education are emphasized for all patients on antiresorptive drugs.\(^{(75)}\) Specific recommendations for prevention, operative, and medical management of ONJ have been reviewed recently.\(^{(73,76)}\)

In the past few years, numerous case reports and small prospective studies have reported healing of AFF or ONJ, typically occurring within a few months of starting teriparatide therapy.\(^{(97–100)}\)

In addition, a few reports have demonstrated a beneficial effect of strontium ranelate in AFF.\(^{(97–99)}\) Based on available reports, a limited course of teriparatide may be considered to
accelerate healing of BP-related AFFs or ONJ, consistent with the recommendations of the ASBMR Task Force on Atypical Femoral Fractures and the International Consensus report on ONJ.\(^9\)\(^{17}\)

**Efficacy and Safety of Alternative Drugs**

A summary of efficacy of alternative therapies is provided in Table 1 and an overview is provided in Supplemental Appendix 5. For detailed reviews on alternative osteoporosis therapies, the reader is directed to published reviews.\(^100\)\(^{101}\) In women previously treated with oral BPs, switching to denosumab was associated with greater increases in BMD and reduction of turnover markers than continued intake of ALN,\(^102\) RIS,\(^103\) and IBN,\(^104\) and comparison with ZOL is still ongoing.\(^105\) However, no information on fracture occurrence after changing therapy is available.\(^102\)\(^{106}\)

Potential additional benefits of bisphosphonate treatment

Side effects of BPs may include beneficial effects, although most evidence is from observational studies. For example, previous studies have reported that some types of cancer may be found less commonly in BP users, such as breast cancer,\(^107\) colon cancer,\(^108\) and gastric cancer.\(^109\) A recent review of osteoporosis registration trials, however, did not show reduced incidence of breast cancer in patients treated with ALN or ZOL,\(^110\) although there may be potential positive effects of BPs in women with established breast cancer.\(^111\) In addition, there is some evidence that vascular disease may be decreased in patients treated with BPs, as manifested by lower risk of stroke\(^112\) and myocardial infarction.\(^113\) There are also some reports that mortality is reduced in patients treated with BPs, although not all studies are positive.\(^54\)\(^{114}–^{119}\) The mechanisms underlying such putative beneficial effects are unclear. Finally, there is some evidence that a decreased incidence of pneumonia and arrhythmia after hip fracture may play a role in the reduced mortality noted in patients treated with ZOL.\(^120\)

**Long-Term Osteoporosis Management With BPs**

A suggested approach

After review of the efficacy and safety data for BP treatment of osteoporosis, the ASBMR Task Force created an approach to aid decisions about the management of patients with osteoporosis on long-term BP therapy, as shown in Fig. 2.

![Fig. 2. Approach to the management of postmenopausal women on long-term bisphosphonate therapy. (1) From the registration trials, the benefits of 5 years of therapy clearly outweigh the risks. For treatment up to 10 years with oral bisphosphonates (FLEX extension) and 6 years with intravenous bisphosphonates (HORIZON extension), estimates of benefits and risks are based on much weaker data. For patients who fracture on therapy, assess adherence and rule out secondary causes of osteoporosis. Management of high risk patients is discussed in the text. (2) The benefits of switching to an alternative anti-fracture therapy after prolonged bisphosphonate treatment have not been adequately studied. (3) Based on FLEX and Horizon extension study (Caucasian women), may not apply to other populations. (4) High fracture risk defined by older age (70–75 years), other strong risk factors for fracture, or FRAX fracture risk score that is above country specific thresholds. The use of FRAX in patients on therapy was only assessed in the Manitoba observational cohort.\(^66\) (5) Reassessment includes clinical evaluation, risk assessment including risk factors, and may include bone density measurement by DXA. The monitoring interval with DXA should be based upon changes that are detectable and clinically significant. Reassessment may be necessary at less than 2 years in patients with a new fracture, or in light of anticipated accelerated bone loss (e.g. institution of aromatase inhibitor or glucocorticoid therapy).](image-url)

<table>
<thead>
<tr>
<th>Medication</th>
<th>Postmenopausal osteoporosis</th>
<th>Men</th>
<th>GIO&lt;sup&gt;a&lt;/sup&gt;</th>
<th>Vertebral fracture risk reduction</th>
<th>Hip fracture risk reduction</th>
<th>Nonvertebral fracture risk reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prevention</td>
<td>Treatment</td>
<td></td>
<td></td>
<td>PMW</td>
<td>PMW</td>
</tr>
<tr>
<td>Anti-remodeling agents</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PMW</td>
<td>PMW</td>
</tr>
<tr>
<td>Alendronate</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
<td>PMW</td>
<td>PMW</td>
</tr>
<tr>
<td>Ibandronate</td>
<td>✅</td>
<td>✅</td>
<td></td>
<td></td>
<td>PMW</td>
<td>–</td>
</tr>
<tr>
<td>Risedronate</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
<td>PMW</td>
<td>–</td>
</tr>
<tr>
<td>Zoledronic acid</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
<td>PMW and M&lt;sup&gt;f&lt;/sup&gt;</td>
<td>PMW and M&lt;sup&gt;f&lt;/sup&gt;</td>
</tr>
<tr>
<td>Bazedoxifene&lt;sup&gt;d&lt;/sup&gt;</td>
<td>✅</td>
<td>✅</td>
<td></td>
<td></td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Lasoxifene&lt;sup&gt;d&lt;/sup&gt;</td>
<td>✅</td>
<td>✅</td>
<td></td>
<td></td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Raloxifene</td>
<td>✓</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Denosumab</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Estrogen</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Conjugated estrogen/ bazedoxifene&lt;sup&gt;g&lt;/sup&gt;</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Calcitonin&lt;sup&gt;h&lt;/sup&gt;</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Tibolone&lt;sup&gt;d&lt;/sup&gt;</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>PMW</td>
<td>–</td>
</tr>
<tr>
<td>Anabolic agents</td>
<td></td>
<td>✅</td>
<td></td>
<td></td>
<td>PMW</td>
<td>–</td>
</tr>
<tr>
<td>Teriparatide</td>
<td>–</td>
<td>✅</td>
<td></td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td>✅</td>
<td></td>
<td>–</td>
<td>PMW</td>
<td>–</td>
</tr>
<tr>
<td>Strontium ranelate&lt;sup&gt;l,d&lt;/sup&gt;</td>
<td>✅</td>
<td>✅</td>
<td></td>
<td>–</td>
<td>PMW</td>
<td>–</td>
</tr>
</tbody>
</table>

PMW = postmenopausal women; M = men.  
<sup>a</sup>GIO fracture data: One alendronate and one risedronate trial each showed a significant reduction in vertebral fractures compared with placebo; one trial showed that teriparatide significantly reduced vertebral fractures compared with alendronate. One trial compared zoledronic acid with risedronate and showed no significant difference in vertebral fracture reduction.  
<sup>b</sup>There are no studies comparing zoledronic acid or teriparatide with placebo.  
<sup>c</sup>Post hoc analysis, in women with FN BMD T-score < -3.  
<sup>e</sup>Same study included men and women and there was no treatment by sex interaction; there was a lack of a statistically significant fracture reduction in men subpopulation, as the sex-based subset analysis was powered for a BMD endpoint and not for antifracture efficacy.  
<sup>f</sup>Vertebral fracture reduction has been demonstrated in another trial conducted exclusively in men.  
<sup>g</sup>Only approved in Europe.  
<sup>h</sup>Post hoc analysis. Femoral Neck T-score ≤ -3 or ≥ 1 moderate or severe vertebral fracture or multiple mild vertebral fractures.  
<sup>i</sup>The ABCSG trial in postmenopausal women on aromatase inhibitors demonstrated a reduction in both vertebral fractures and any clinical fractures, trial in men with prostate cancer on androgen deprivation therapy.  
<sup>j</sup>Approval indication: FDA approval for osteoporosis prevention and European Medicines Agency approval for estrogen-deficiency symptoms.  
<sup>k</sup>Calcitonin withdrawn from EU market, available in US for restricted conditions. See main text and FDA link.  
<sup>l</sup>In all study groups, there was a significant reduction in moderate to severe fractures in the combined group (teriparatide 20 mcg and 40 mcg). In the subgroup of men who had prevalent fracture at baseline, there was a significant reduction in all vertebral fractures in the combined group (teriparatide 20 mcg and 40 mcg) and a significant reduction in moderate to severe vertebral fractures in each group separately.  
<sup>m</sup>Approved by EMEA with restrictions: “Strontium ranelate is now restricted to the treatment of severe osteoporosis in postmenopausal women and adult men at high risk of fracture who cannot use other osteoporosis treatments because of, for example, contraindications or intolerance. The risk of developing cardiovascular disease should be assessed before starting treatment. Treatment should not be started in people who have or have had ischemic heart disease or peripheral arterial disease or cerebrovascular disease or uncontrolled hypertension. Cardiovascular risk should be monitored every 6–12 months. Treatment should be stopped if the individual develops ischemic heart disease, peripheral arterial disease, or cerebrovascular disease, or if hypertension is uncontrolled.”  
<sup>n</sup>Subgroup of high-risk postmenopausal women, aged ≥ 74 years and femoral neck bone mineral density T-score ≤ -3, corresponding to −2.4 according to NHANES reference.
Because registration trials that demonstrated the antifracture efficacy of BPs\(^4\)\(^\text{-}25,26,28\text{-}31\) and their corresponding extension studies with continuation or discontinuation of therapy thereafter\(^3\)\(^\text{-}8,18\) have been exclusively conducted in postmenopausal women, the approach pertains to the management of this specific patient population. Based on these trials and post hoc analyses of data from trials that exclusively used ALN and ZOL,\(^4\)\(^\text{-}5,27,38\) the Task Force determined that for postmenopausal women who have been on oral BP therapy for 5 years or intravenous ZOL for 3 years, but less than 10 years, a major consideration was whether the particular patient had experienced a hip, spine (including asymptomatic vertebral compression fractures found by serial height measurements and/or images before therapy discontinuation), or multiple other osteoporotic fractures before therapy, or experienced a major osteoporotic fracture (spine, hip, humerus, or forearm) while on therapy. Because such fractures, especially when recent (ie, experienced within 3 to 5 years), increase future fracture risk,\(^3\)\(^\text{-}12,121\text{-}125\) the Task Force suggests that providers discuss with patients about the option of continuing oral BP therapy for up to a total of 10 years. For IV BP use, the approach pertains to <6 years of ZOL. Patients who sustain a major osteoporotic fracture while on therapy should also undergo evaluation for causes of secondary osteoporosis, new risk factors, and assessment of adherence with medication. In addition, switching to alternative therapies may be considered, although there have not been adequate studies to evaluate the efficacy of such an approach. The optimal length of therapy for the patient who suffers a fracture while on treatment has not been established, and clinical judgment will be needed to determine each patient’s specific fracture risk. In addition, the potential contributions of poor compliance or adherence to therapy, inadequate vitamin D status, high fall risk, or new risk factors should be taken into consideration.

In addition to recent fracture, other potential variables that may signal increased fracture risk and that could be used for the decision on whether to continue therapy include older age (for example, >70 to 75 years), medication use (eg, aromatase inhibitors, glucocorticoid therapy), or new diagnosis of a disorder associated with secondary osteoporosis. If the clinician determines that the patient remains at elevated fracture risk, based on femoral neck T-score, age, or other risk factors, the Task Force suggests that the provider discuss with the patient the option of continuing BP treatment for another 2 to 3 years with reassessment at that time. For those women who are not considered to be at high fracture risk by these limited tools, a drug holiday may be considered with reassessment at 2 to 3 years, perhaps with earlier assessment for those women treated with RIS. Alternative antifracture therapy could also be considered for those patients remaining at high risk for fracture. Alternative treatments would include the agents described in Supplemental Appendix S5: teriparatide and denosumab as first options, then raloxifene and, depending on the patient risk profile, strontium ranelate could be considered in patients who cannot tolerate any of the above alternative therapies provided the patient is not at high risk for cardiovascular disease.

In view of the lack of definitive evidence to support a clinical pathway, although the Task Force–suggested approach can be regarded as an aid to making management decisions, it does not replace the need for clinical judgment in the care of individual patients. The approach was developed to reflect the data from two large clinical trials in which the majority of subjects were white American and European women. The limitations of the suggested approach, risk stratification, and applicability to other groups are outlined in section below. Country-specific thresholds and those for non-white women for initial treatment vary, and so may thresholds for continuation or reinstitution of therapy.

**Limitations of the Proposed Approach**

**Risk stratification by prevalent fractures**

Risk stratification determined by history of fractures is based on evidence that this subgroup represents a high-risk category and one in which benefit may be derived from continued therapy for up to 10 years using ALN and 6 years with ZOL. This conclusion is derived from the HORIZON extension study only.\(^3\)\(^\text{-}8\) However, many patients with a history of major osteoporotic fractures are older, have experienced multiple osteoporotic fractures, and may have received BPs for more than 10 years. Although such patients remain at high risk for future fractures as they continue to age, with a consistent increase in fracture risk even when on treatment,\(^6\)\(^5\) there is no evidence to guide clinicians on the best therapeutic option beyond 10 years. Such scenarios, therefore, could not be adequately addressed in the suggested approach (see illustrative cases in Supplemental Appendix S1).

**Risk stratification in patients without a history of fracture**

In untreated patients, increasing age and decreasing bone density T-scores at the hip are well-established independent risk factors for fractures and predictive of response to therapy. The evidence for continued BP treatment efficacy based on a hip T-score ≤ −2.5 is limited to the FLEX and HORIZON extension trials that were conducted in older postmenopausal white women.\(^4\)\(^\text{-}5,38\) The evidence for age, BMI, and other risk factors from these studies is also quite limited. Age, entered as a continuous variable at entry into FLEX extension, was predictive of future clinical fractures\(^3\)\(^7\) after discontinuation of ALN therapy.

To date, there are no trials that have tested the antifracture efficacy of switching therapies after 3 to 5 years of BP treatment, nor have any trials extended beyond 10 years, or assessed the utility of reintiation of treatment after a drug holiday. The lack of good evidence for continued drug efficacy for prolonged periods is not unique to the field of osteoporosis and stems from the fact that most drug registration trials for chronic diseases last only 3 to 5 years, whereas approved therapies for such diseases are used for many more years. However, in the case of BPs, the increase in the risk of harms constitutes an additional challenge in the management of high-risk patients. The suggested approach, therefore, only constitutes a framework for decision making in patients on BP therapy for less than 10 years. This lack of solid evidence is unlikely to change and implies that a tailored approach, which includes assessment of each patient’s individual risk profile, must be adopted. A thoughtful risk-benefit analysis, shared decision making with the patient, and careful follow-up are strongly recommended. Referral of the most challenging patients, such as those who are considered high risk and have been on BPs for more than 10 years or who fracture after several years of BP therapy, to an osteoporosis expert should also be considered. The illustrative cases described in Supplemental Appendix S1 provide some examples of challenges encountered in practice that could not all be
addressed by the suggested approach, and illustrate how clinical decisions may be reached. Lastly, the data available do not allow for a similar assessment for men with osteoporosis or for subjects with glucocorticoid-induced osteoporosis, topics discussed in the following section.

Application of the Approach to Patients on Glucocorticoid Therapy or Men

Long-term bisphosphonate therapy in individuals taking continuous oral glucocorticoids

Glucocorticoid-induced osteoporosis is a common cause of secondary osteoporosis and often requires long-term bone-protective therapy. Although bone loss and low BMD contribute to fracture in individuals treated with glucocorticoids, the increased fracture risk is partially independent of BMD, and fractures occur at a higher BMD than in other forms of osteoporosis.\(^{(126)}\) As a consequence, most guidelines recommend that treatment be started at a higher T-score in women receiving long-term glucocorticoid therapy than in those not receiving glucocorticoids.\(^{(127,128)}\)

The efficacy of BP therapy in women and men taking glucocorticoids has mostly been studied for only 1 to 2 years, with the exception of the comparator study of teriparatide versus ALN, for which 3-year data are available.\(^{(129–135)}\) Furthermore, fracture has not been a primary endpoint of any of the treatment studies in glucocorticoid-induced osteoporosis. Post hoc or safety analyses have shown a reduction in morphometric vertebral fracture for ALN, etidronate, and RIS; in the comparator study of teriparatide versus ALN, teriparatide treatment was significantly more effective than ALN in reducing both morphometric and clinical vertebral fractures.\(^{(134)}\) There is no evidence from any of the studies for a reduction in nonvertebral or hip fractures, but the number of subjects studied was small. See Table for approved BPs in glucocorticoid-induced osteoporosis.

Long-term bisphosphonates therapy in men

Glucocorticoid therapy or Men

The ef

Long-term bisphosphonate therapy in men

The efficacy of BP therapy in men has mostly been studied for 2 to 3 years, with extension studies proceeding for as long as 4 years.\(^{(137–142)}\) ALN, RIS, and ZOL have been approved for treatment of osteoporosis in men but not IBN (Table). The optimal duration of therapy in men has not been determined. Unlike for postmenopausal women, fractures have not been the primary endpoint for any of the BP treatment studies in men except for a single ZOL trial.\(^{(143)}\) There is no evidence from any of the studies for a reduction in nonvertebral or hip fractures in men (Table), although men were included in the ZOL post-hip fracture trial in which a reduced fracture risk was demonstrated in the overall study population. Long-term safety data for BP therapies in men are also lacking. The prevalence of comorbidities and comediations in men might be expected to lead to similar risk of adverse events as in women. There is no evidence from studies that long-term BP therapy increases the risk of BP-associated AFF and ONJ more in men than in women. In one recent observational study,\(^{(144)}\) AFF incidence was not related to BP treatment duration. There is no evidence that cessation of BP therapy in men leads to greater or more rapid increase in fracture risk than in women. It remains unclear how long it takes in men for fracture risk to return to baseline values before treatment, but presumably this is similar to postmenopausal women. If fracture risk remains high based on post-treatment BMD or other risk factors as suggested for postmenopausal women, continued treatment should be considered. In men who require continued bone-protective therapy and who have received BPs for more than 5 years, switching to teriparatide may be considered.

In light of these considerations, the approach developed by the ASBMR Task Force on Long-Term Bisphosphonates can be considered generally applicable to older men, although evidence in men is much scarcer than in postmenopausal women. Men on long-term BP therapy presumably have similar safety issues as postmenopausal women, with no greater risks identified in men. It would be reasonable to continue treatment in men on long-term therapy with a history of hip, spine, or multiple other osteoporotic fractures or major osteoporotic fracture while on therapy. For other men who have hip BMD T-scores above −2.5 and who are not considered high risk because of age or other risk factors such as androgen-deprivation therapy for prostate cancer, consideration of a drug holiday is reasonable for 2 to 3 years. Again, those men on RIS may need earlier reassessment. On the other hand, for men who have these types of fractures or have a hip BMD T-score at or below −2.5 or who are high risk, it is reasonable to continue treatment, with reassessment for possible drug holiday in 2 to 3 years. This conclusion is based on the evidence that changes in surrogates
for fracture (BMD) in response to BPs are similar in men and women. The IOF and ISCD recommend that a white female database be used for calculation of the T-score in men, as does the FRAX online calculator, whereas the NOF and Endocrine Society recommend the use of a white male database. The former approach would decrease the number of men who would be considered eligible for continued treatment after 3 to 5 years of BP. The impact of database selection in men on fracture prediction and actual fracture incidence was investigated by Ensrud and colleagues in treatment naive men from the MrOs cohort in the US.\(^{(145)}\) The authors demonstrated that in the subgroup of men with osteoporosis exclusively defined by T-score using a female reference database, the proportion of subjects who actually experienced osteoporotic fractures (major or hip) were highest compared with those in the subgroup identified by the use of a male database or other subgroups.

### Conclusions

It is obvious that there is relatively little evidence on which the Task Force can base recommendations, and indeed we have presented management suggestions based on limited data and clinical experience. Risk stratification is an important consideration to guide therapy continuation in patients on long-term BPs, as it also should be in treatment naive individuals.

The risk of AFF is low, with an incidence of up to 50/100,000 during the first 5 years of BP, resulting in a clear positive benefit/risk ratio within this time frame. However, although the risk of AFF increases further with prolonged BP use, reaching up to 113/100,000 after 8 to 9 years, there is much less certainty about these estimates, thus rendering an assessment for a sustained positive benefit/risk ratio with more prolonged BP use quite challenging. Furthermore, sustained fracture efficacy with prolonged BP use has been shown for vertebral fracture only. The sample size of the extension studies was too small to enable detection of nonvertebral fracture risk reduction. Thus, the ultimate decision for a patient to continue long-term BP therapy beyond 5 years should take into consideration the limitations of the efficacy and safety studies. Patients’ values and preferences should be integrated with the limited data available to enable individualized shared decision making.

The cases presented in Supplemental Appendix S1 demonstrate how individualization of management is achieved. For many of the challenges raised, studies do not exist to guide our practice, such as in the use of BPs beyond 10 years and long-term BP use in men or in patients on long-term glucocorticoid therapy. They also show that even if there were multiple randomized controlled studies on which the approach could be based, clinical judgment would still play an important role in taking care of patients with osteoporosis. As has been discussed in a series of papers on guidelines,\(^{(146)}\) basing guidelines on randomized trials does not address the impact of coexisting conditions in many patients with a given disorder. This is particularly true for osteoporosis because most patients are older and very often have many comorbidities.

It is unlikely that there will ever be randomized controlled trials of osteoporosis patients of sufficient size and duration to provide clear evidence that a given strategy for long-term management leads to fewer osteoporotic fractures. Observational studies may provide some information, but they are always affected by potential unmeasured confounders and by the fact that many patients are not adherent to osteoporosis therapy. With new medications in development, it may be possible to treat patients with a sequence of therapeutic agents in the hope that such a strategy will lead to fewer adverse events but improved fracture risk reduction. Nonetheless, the new drugs will likely be approved based on registration trials similar to the ones for existing approved drugs, and no trials are anticipated to address sequential therapies over extended periods of times. The clinician caring for the patient with the chronic disorder of osteoporosis will need to use the art in addition to the science of medicine. The approach created by the Task Force will be only one tool to help in clinical decision-making.

### Research needs and future directions

It is unlikely that additional evidence from the FLEX and HORIZON extension studies will result in major changes to the suggested approach in the near future. However, there is a pressing need to validate the use of FRAX or other fracture risk calculators in individuals on BP therapy. Similarly, investigations of additional tools or different approaches to use bone turnover or other markers to apply a personalized approach and identify high-risk individuals while on or off therapy, to detect those at higher risk for AFF or ONJ, and to monitor individuals off therapy are also needed. Studies of sequential therapy may identify new long-term strategies for fracture risk reduction. Finally, lessons learned from the prolonged BP therapy experience should be taken into account when developing protocols for extension studies for current and future therapies.

### Disclosures

The American Society for Bone and Mineral Research (ASBMR) is well served by the fact that many of those responsible for policy development and implementation have diverse interests and are involved in a variety of activities outside of the Society. Accordingly, the ASBMR requires all ASBMR Officers, Councilors, Committee Chairs, Editors-in-Chief, Associate Editors, and certain other appointed representatives to disclose any real or apparent conflicts of interest (including investments or positions in companies involved in the bone and mineral metabolism field), as well as any duality of interests (including affiliations, organizational interests, and/or positions held in entities relevant to the bone and mineral metabolism field and/or the American Society for Bone and Mineral Research).

The committees, task forces, and editorial boards of the ASBMR and its publications carry out the work of the Society on behalf of the membership. The distinct functions of the committees, task forces, and editorial boards are intended to address the broad mission of the ASBMR: to promote excellence in research and education, to integrate basic and clinical science in the field of bone and mineral metabolism, and to facilitate the translation of research into clinical practice and the betterment of human health. Chairs and members of committees, task forces, and editorial boards must assure that they act in these roles in a manner free from commercial bias and that they resolve any conflict or duality of interest or disclose them and then recuse themselves from related deliberations and voting. Below is a summary of disclosures from each task force member.
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Amgen</th>
<th>Consulting fees (other than Advisory Board or Board of Directors)</th>
<th>Institution</th>
<th>Under $6,000</th>
<th>Current</th>
<th>Research consultant on 2 academic studies of osteoporosis treatment.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robert Adler</td>
<td>McGuire VA Medical Center</td>
<td>Amgen</td>
<td>Consulting fees (other than Advisory Board or Board of Directors).</td>
<td>Individual</td>
<td>Under $6,000</td>
<td>Current</td>
<td>Research consultant on 2 academic studies of osteoporosis treatment.</td>
</tr>
<tr>
<td>Genentech</td>
<td>Research grants</td>
<td>Institution</td>
<td>$6,000–$20,000</td>
<td>Past</td>
<td>Pl for investigator-initiated study of pituitary dysfunction in military traumatic brain injury. Study has ended.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Merck</td>
<td>Research grants</td>
<td>Institution</td>
<td>$6,000–$20,000</td>
<td>Past</td>
<td>Completed study of odanacatib in men.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Novartis</td>
<td>Research grants</td>
<td>Institution</td>
<td>$6,000–$20,000</td>
<td>Past</td>
<td>Completed extension study of zoledronic acid treatment of postmenopausal osteoporosis. Completed surveillance study of growth hormone replacement in adults.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eli Lilly</td>
<td>Research grants</td>
<td>Institution</td>
<td>$6,000–$20,000</td>
<td>Past</td>
<td>Completed surveillance study of growth hormone replacement in adults.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amgen</td>
<td>Research grants</td>
<td>Institution</td>
<td>$6,000–$20,000</td>
<td>Past</td>
<td>Completed study of bisphosphonate adherence using large administrative databases.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ghada El-Hajj Fuleihan</td>
<td>American University of Beirut-Medical Center</td>
<td>Leis Laboratoires Services</td>
<td>Other Institution $6,000–$20,000 Current</td>
<td>Educational grant to hold a densitometry ISCD Academy Course.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Douglas Bauer</td>
<td>University of California, San Francisco</td>
<td>No past disclosures reported.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bart Clarke</td>
<td>Mayo Clinic College of Medicine</td>
<td>No past disclosures reported.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gregory Clines</td>
<td>University of Michigan University of Cambridge School of Clinical Medicine</td>
<td>GSK</td>
<td>Consulting fees (other than Advisory Board or Board of Directors).</td>
<td>Individual</td>
<td>Under $6,000</td>
<td>Past</td>
<td>Advisory Board attendance.</td>
</tr>
<tr>
<td>Juliet Compston</td>
<td>University of Cambridge School of Clinical Medicine</td>
<td>Servier</td>
<td>Honoraria or royalties</td>
<td>Individual</td>
<td>Under $6,000</td>
<td>Past</td>
<td>Speaker at several national meetings.</td>
</tr>
<tr>
<td>Warner Chilcott/University of Massachusetts</td>
<td>Sanofi-Aventis/University of Massachusetts</td>
<td>Nycomed</td>
<td>Honoraria or royalties</td>
<td>Individual</td>
<td>Under $6,000</td>
<td>Past</td>
<td>Participation in GLOW study (Global Longitudinal Study of Osteoporosis in Women).</td>
</tr>
<tr>
<td>Sanofi-Aventis/University of Massachusetts</td>
<td>Nycomed</td>
<td>Research grants</td>
<td>Institution</td>
<td>$&gt;100,000</td>
<td>Past</td>
<td>Participation in GLOW study.</td>
<td></td>
</tr>
<tr>
<td>Amgen</td>
<td>Honoraria or royalties</td>
<td>Individual</td>
<td>Under $6,000</td>
<td>Past</td>
<td>Research grant for histomorphometric analysis of biopsies from PEAK study. Finished.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warner Chilcott/University of Massachusetts</td>
<td>Sanofi-Aventis/University of Massachusetts</td>
<td>Research grants</td>
<td>Institution</td>
<td>$&gt;100,000</td>
<td>Past</td>
<td>Speaker at several national meetings.</td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Consulting fees (other than Advisory Board or Board of Directors).</td>
<td>Individual</td>
<td>Under $6,000</td>
<td>Past</td>
<td>Speaker at national meeting.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amgen</td>
<td>Honoraria or royalties</td>
<td>Individual</td>
<td>Under $6,000</td>
<td>Past</td>
<td>Attendance at Advisory Board.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GlaxoSmithKline</td>
<td>Research grants</td>
<td>Institution</td>
<td>$&gt;100,000</td>
<td>Past</td>
<td>Histomorphometric analysis of bone biopsies from HIV-positive individuals. Speaker at national and international meetings.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilead</td>
<td>Honoraria or royalties</td>
<td>Individual</td>
<td>Under $6,000</td>
<td>Past</td>
<td>Member of Data Monitoring Committee for FREEDOM Study. Advisory Board attendance.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Institution</td>
<td>Role/Activity</td>
<td>Amount</td>
<td>Type</td>
<td>Disclosures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------</td>
<td>-----------------------------------------------</td>
<td>----------</td>
<td>----------</td>
<td>-----------------------------------------------------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acuitas</td>
<td>Institution</td>
<td>Research grants</td>
<td>&gt;$100,000</td>
<td>Individual</td>
<td>Study of MRI-based analysis of trabecular bone structure; no longer active.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medtronic</td>
<td>Individual</td>
<td>Consulting fees (other than Advisory Board or Board of Directors).</td>
<td>Under $6,000</td>
<td>Past</td>
<td>Advice on submission to NICE HTA for vertebroplasty and kyphoplasty. Finished.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nycomed</td>
<td>Individual</td>
<td>Honoraria or royalties</td>
<td>Under $6,000</td>
<td>Past</td>
<td>Speaker at several international meetings.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Novartis</td>
<td>Institution</td>
<td>Consulting fees (other than Advisory Board or Board of Directors).</td>
<td>&gt;$100,000</td>
<td>Past</td>
<td>Member of Data Safety Monitoring Board for HORIZON study. Attendance at Advisory Board meeting.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sanofi-Aventis</td>
<td>Institution</td>
<td>Research grants</td>
<td>Under $6,000</td>
<td>Past</td>
<td>Participation in GLOW study.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>Individual</td>
<td>Honoraria or royalties</td>
<td>Under $6,000</td>
<td>Past</td>
<td>Speaker at national meeting.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sanofi-Aventis</td>
<td>Institution</td>
<td>Research grants</td>
<td>Under $6,000</td>
<td>Past</td>
<td>Study of MRI-based analysis of trabecular bone structure; no longer active.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matthew Drake</td>
<td>Mayo Clinic College of Medicine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beatrice Edwards</td>
<td>MD Anderson Cancer Center</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Murray Favus</td>
<td>University of Chicago</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Susan Greenspan</td>
<td>University of Pittsburgh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ross McKinney</td>
<td>Duke University School of Medicine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robert Pignolo</td>
<td>University of Pennsylvania</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deborah Sellmeyer</td>
<td>The Johns Hopkins Bayview Medical Center</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Acknowledgments

Dr Nelson Watts served as a consultant to the Task Force and gave input on all Task Force documents. In addition, the authors thank international experts for their contributions to various parts of the manuscript: Dr Dennis Black for information, interpretation, and discussions regarding FLEX and HORIZON extension studies; Dr Felicia Cosman for discussions and information regarding the HORIZON study; Dr Richard Eastell for input regarding the usefulness of bone remodeling markers in the context of drug holidays; and the following experts for input regarding the developed algorithm and its applicability worldwide: Drs Peter Ebeling, Akira Itabashi, Aliya Khan, Edith Lau, William Leslie, Ambrish Mithal, and Michael McClung. The authors thank Drs Michael McClung and Marlene Chakhtoura for the Table summarizing approved osteoporosis therapies and antifracture efficacy by sex and skeletal site. The authors thank the following individuals at the American University of Beirut for their assistance in completing Task Force charges: Ms Aida Farha, medical information specialist, Saab Medical Library, for her advice and assistance in designing comprehensive and complex searches of the various medical literature resources and for the provision of select articles; Ms Maya Rahme for running the search and retrieving relevant articles; and Mr Ali Hammoudi for his artwork on the algorithm and Supplemental Appendices. The authors thank members of the ASBMR Professional Practice Committee (Suzanne Jan de Beur [Chair], Douglas Bauer, Jan Bruder, Nuria Guanabens, Eric Hesse, Erik Imel, Deborah Sellmeyer, Emily Stein, Pamela Taxel, and Bo Abrahamson) for their insightful comments on the ﬁnal draft of Task Force Report. Special thanks to Douglas Feiler and Kirsten Mills for their continued support throughout the work of the Task Force.

Authors’ roles: The original charge came from the ASBMR Professional Practice Committee and was modiﬁed by the entire task force. All the drafts were written by the co-chairs with speciﬁc input from all of the members of the task force. The entire task force reviewed the manuscript, provided edits, and approved the ﬁnal draft.

References


139. FDA Product Information. Reclast (R) intravenous injection, Novartis Pharmaceuticals Corp. (formerly URL). Reclast (R) intravenous injection, Novartis Pharmaceuticals Corporation (formerly URL). Reclast (R) intravenous injection, Novartis Pharmaceuticals Corporation (formerly URL). Reclast (R) intravenous injection, Novartis Pharmaceuticals Corporation (formerly URL). Reclast (R) intravenous injection, Novartis Pharmaceuticals Corporation (formerly URL).


APPENDIX I CASES

CASE STUDIES and MANAGEMENT STRATEGIES

These cases illustrate common clinical scenarios that the algorithm does not address due to the limitations of the evidence available. Such cases are best managed by osteoporosis experts.

Case 1: Patient with a fragility fracture of the hip after discontinuation of long-term BPs

A 71 year old Lebanese woman with a history of osteoporosis by BMD, vertebral fracture, and parental history of hip fracture was started on BPs 11 years ago. She was initially treated with ALN for 4 years, then changed to risedronate for 7 years after a vertebral fracture. At her last visit to the osteoporosis clinic 4 months prior, a drug holiday was recommended, as she had been fracture free for 7 years, with a plan for a clinical evaluation in one year and BMD assessment in 2-3 years. At that time, her BMI was 21.5 kg/m², and her calculated 10-year risk for major osteoporotic fracture (MOF), using FRAX Lebanon, was 12%, and for hip fracture 5%. The fracture liaison service was consulted on the day after she presented to the ER, having sustained an inter-trochanteric fracture after a fall by tripping on a folded carpet. Review of her X-rays revealed that the fracture was not pathologic and confirmed that it was not in the sub-trochanteric region. A review of her BMD scans at the time of therapy discontinuation had revealed a T-score of -2.3 at the femoral neck, -1.9 at the total hip (using NHANES database), an increase of 3% at the total hip compared with baseline on same machine, and no change compared with the previous year. Evaluation for causes of secondary osteoporosis was negative.

Management Approach and Rationale:

The patient was discharged on calcium and vitamin D with the plan to start denosumab therapy on follow-up in the clinics. The decision to begin a drug holiday 4 months prior to the hip fracture seemed reasonable at the time, despite the patient’s personal history of vertebral fracture and parental history of hip fracture, because of her initially improved then stable BMD, lack of any recent major osteoporotic fracture,(3,7) and long-term therapy with BPs. The decision was based on the 10 year calculated MOF FRAX estimate, rather than T-score, because populations in Middle East and Asia have lower T-scores than observed in Western populations using the NHANES database but also have lower hip fracture incidence rates. Her 10 year risk for MOF, using a country specific FRAX, was at the country-specific intervention threshold, but in reality may even be a bit lower, due to the fact that she was on therapy at that time. Indeed, although the use of FRAX in patients on therapy is not well validated, it was shown in the Manitoba Cohort that actual fracture incidence rates are 30% lower than FRAX calculated rates for hip fractures, but not overall fractures, in patients adherent to osteoporosis therapy.(8) Furthermore, she received the necessary evaluation in the hospital by a service of experts, to ensure that when therapy was discontinued, she had achieved the anticipated BMD response, did not fracture because of non-compliance or lack of response to treatment, and had no causes of secondary osteoporosis or other pathologies to explain her fracture after 11 years of BP treatment. This case illustrates the limitations of the algorithm given the lack of any data on BP treatment beyond 10 years in high risk subjects. Many high risk patients, or those with a history of recurrent fractures, are given BP therapy beyond 10 years. In such patients, sequential therapy with another antiresorptive drug, changing from one oral BP to another, or switching from oral to IV BP, or changing to denosumab has no supportive evidence base. Because fracture risk is highest within first few years of a major osteoporotic fracture, estimated at 14% for a second hip fracture, 10% for other non-vertebral fractures, and 4% for clinical vertebral fractures within 2 years,(7) the team recommended denosumab therapy to be started at her clinic follow-up. One randomized trial demonstrated that when postmenopausal women on alendronate for at least 6 months, those switched to denosumab had significantly greater increments in bone density at the hip (+1.085%) and other skeletal sites, compared to patients continued on alendronate.(8) This however may not necessarily translate in superior fracture efficacy. To-date, that there are no studies to support the efficacy of switching a high risk patient after long-term BP use to alternative therapy(ies) for reducing the risk of vertebral and non-vertebral fractures (see legend to algorithm).

Take home message: No treatment eliminates fracture occurrence completely, and there are no trials investigating fracture incidence in patients switched from one drug to another. The consult team’s decision to switch to a non-bisphosphonate drug in a patient who had received BPs for 11 years is clearly based on expert opinion, and aimed at minimizing the risk of AFF in the future, a risk shown to increase with long term use of BPs.(9)

Case 2: Patient on long-term glucocorticoid therapy

A 62 year old woman who received a left lung transplant for chronic obstructive pulmonary disease (COPD) 5 years prior was seen in the clinic for bone evaluation. She is currently maintained on cyclosporine, prednisone 5 mg/daily, vitamin D2 50,000 IU every other
week, and calcium 1200 mg daily. She started ALN a few weeks after lung transplantation and continues on the medication without adverse events. She did not suffer from any fractures prior to or while on therapy. Current DXA scan showed a lumbar spine T score of -2.3 and femoral neck T score of -2.2. This has remained stable in the past few years. Bone turnover markers are in the premenopausal range; BSAP of 9.6 ug/L (normal range for premenopausal female 4.5-16.9 ug/L) and CTX of 236 pg/ml (normal range for premenopausal women 64-465 pg/ml), 25 (OH)D is 45 ng/ml and PTH is 56 pg/ml (10-65 pg/ml). The remainder of the laboratory test results is unremarkable. There is no family history of fractures.

Management Approach and Rationale:
Several guidelines address the management of patients on glucocorticoids, and use different criteria based on age, history of fractures, glucocorticoid dose and duration, T-score based or risk assessment based thresholds.(10) Guidelines that use FRAX based threshold assume the thresholds are derived in treatment naive patients, which is not the case here.

This patient is relatively younger, her prednisone dose has been weaned to 5 mg/day, her T scores are > -2.5, she has never suffered from a fragility fracture, and her bone turnover markers are in the premenopausal range. She could qualify for observation if one considered the intervention thresholds set by the NOF.(10) Although the risks of ONJ and AFF are very low, concurrent use of glucocorticoid may increase the risk of these adverse events,(11) and as such, it would be reasonable to give her a drug holiday at this point.

During the BP holiday, the patient should be advised to report any clinical fracture and to remain compliant with her calcium and vitamin D supplementation. A fragility fracture should prompt resumption of therapy. BMD should be monitored at 2-3 years. In patients like this, BMD usually remains stable for a few years. Anti-resorptive therapy could be resumed once BMD declines beyond the least significant change (LSC) of the machine. While some expert clinicians advocate more frequent DXA testing and use of BTMs to monitor patients such as this, unfortunately there are no studies to support this approach.

Alternatively, this patient may be eligible for treatment by intervention thresholds set by few organizations including the American College of Rheumatology(10,12) and in light of the fact that higher T-score thresholds may be used in patients receiving glucocorticoid therapy than those used in postmenopausal osteoporosis, (i.e. the -2.5 hip T-score cut-off used in the proposed algorithm). It may be appropriate to continue BPs until 10 years, or to the point where she could discontinue glucocorticoids. The decision to continue, discontinue, or switch therapy must be made on an individual basis.

Take home message: In patients on glucocorticoids, the assessment of fracture risk must include the patient’s age, bone density, fracture history and glucocorticoid dose and duration. The underlying disorder (and its activity) will also play a role in therapeutic decisions. There are no studies of long term therapy for glucocorticoid induced osteoporosis, and varying intervention thresholds have been proposed by different medical organizations.

Case 3: Patient with decreasing BMD following BP discontinuation
A 75 year old Caucasian woman was treated with ALN for postmenopausal osteoporosis for ten years, without recognized fractures during treatment. To minimize her risk of ONJ and AFFs, her ALN was discontinued. Her lowest BMD value at the time of discontinuation of therapy was -2.2 at the left femoral neck site. Follow-up DXA bone density testing after 3 years of drug holiday showed that the lowest T-score at the femoral neck was now -2.7, with 7.5% loss at this site. Similar losses were reported at the lumbar spine and right femoral neck. Even though bone loss after discontinuation of oral BPs(13) is not a predictor of fractures off therapy and she had not fractured, her physician decided to resume therapy with ZOL 5 mg IV once a year because of her bone loss and low T-score. For the last two years on ZOL treatment, she has had no fractures, no new side effects, and has gained 5.0% at her left femoral neck site.

Management Approach and Rationale:
With this improvement in BMD and with little evidence that further treatment would be of benefit to decrease fracture risk,(14) a second drug holiday would be suggested for this patient with clinical assessment yearly and a repeat DXA in 2 years.

Take home message: This case illustrates the importance of measuring bone mineral density correctly so that decisions can be based on center specific least significant change. Drug holidays in patients who have received long term BP therapy and do not have fractures, should be considered but their duration and the best monitoring parameters off therapy are not clearly defined.

Case 4: Woman with multiple risk factors
A 77 year old Caucasian woman with a parental history of hip fracture was noted to have low BMD (lumbar spine T-score of -1.9) on her first DXA scan done at the onset of menopause. Soon after the initial BMD, an L3 compression fracture with 50% loss of height was discovered. Treatment with ALN was initiated and continued for nine years. ALN was then discontinued to minimize the risk for ONJ or AFF. A follow up DXA scan showed the lumbar spine T score remained at -1.9; the mean total hip T-score was -2.3. She was referred to an osteoporosis specialist for further management in view of the fact she remained at high fracture risk. Indeed, she had a BMI of 20 kg/M2, and her 10 year FRAX would be estimated at 35% for MOF and 23% for hip fracture, if she were drug naive.

While the spine T-score was unchanged over nine years of BP therapy and no fracture had occurred, the osteoporosis expert recommended switching anti-fracture therapy using a non-BP, after discussing the limited evidence and pros and cons of such an approach with the patient.

She was begun on teriparatide 20 mcg SC daily, which increased her lumbar spine BMD by 13.4% and total hip BMD by 6.8% by 24 months. To preserve the increases in spine and hip BMDs, she received a series of four ZOL infusions 5.0 mg IV every 12 months. One year after the fourth infusion, her spine BMD had increased by 3.1% while her total hip BMD was stable. No new clinical fractures occurred since her original treatment.
Management Approach and Rationale:

The patient’s major risk factor was parental history of hip fracture, which was likely a significant contributing factor for her perimenopausal osteopenia and the atraumatic lumbar vertebral compression fracture. Although the risk of subsequent fractures is highest within the first 3-5 years following fracture incidence, therapy was continued because of her high fracture risk as assessed above. She therefore received either oral or intravenous bisphosphonate for a total 13 years, and teriparatide for two years. ALN stabilized her BMD, teriparatide increased the BMD, and ZOL infusions increased spine and stabilized hip BMDs. As a result, fracture risk was likely reduced and no new clinical fracture occurred during these therapies.

Women with parental history of hip fracture may have decreases in BMD at the menopause that predispose to fractures earlier than in women without a family history of osteoporosis. The treatment plan used an oral BP followed by an interval of teriparatide and then IV BP. Mixing the therapies prevented bone loss and stabilized or increased BMDs and likely reduced fracture risk. Although, the evidence for fracture reduction is only available for vertebral fracture reduction with oral ALN for up to 10 years and IV ZOL for up to 6 years, and there is no evidence for non-vertebral fracture risk reduction, the expert decided to extend treatment beyond the 10 years depicted in algorithm (Figure 2), in view of the patient’s presumed high risk based on low BMI, positive family history, and calculated FRAX. However, the use of FRAX in patients on therapy has not been well validated.

Take home message: Family history of hip fracture clearly plays an important role in the fracture risk calculator, FRAX. This patient has responded well to sequential therapy, although her management was based on expert opinion because of the lack of long term studies.

Case 5: Woman on Aromatase Inhibitor Therapy

A 63 year old Caucasian woman with a history of osteoporosis was diagnosed with Stage II breast cancer. She received breast-conserving surgery with lumpectomy and sentinel lymph node biopsy. The tumor was T2N0 and strongly expressed both estrogen receptor and progesterone receptor but was HER2 negative. Molecular testing characterized the tumor as low risk for recurrence and chemotherapy was not recommended; however, adjuvant endocrine therapy with an aromatase inhibitor (AI) was recommended for 5 years starting upon completion of adjuvant radiation therapy. The adjuvant anti-estrogen therapy was expected to reduce her risk of breast cancer recurrence as well as to reduce the risk of a new breast cancer.

Three years prior to the diagnosis of breast cancer the patient had been diagnosed with osteoporosis and had started weekly ALN. The patient’s care team acknowledged the risk of accelerated bone loss with an AI. Plans were made to continue the ALN while initiating the AI. Calcium, vitamin D and weight bearing exercise counseling were provided.

Two years following initiation of AI therapy, the patient continued on ALN without side effects. She made the informed decision to continue with the AI rather than change to tamoxifen due to concerns for thromboembolic events. The table below outlines the results of her serial DXA studies in same center and on the same densitometer.

<table>
<thead>
<tr>
<th>Femoral Neck T-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline at osteoporosis diagnosis</td>
</tr>
<tr>
<td>3 years of alendronate and start of the aromatase inhibitor</td>
</tr>
<tr>
<td>5 years of alendronate and 2 years of the aromatase inhibitor</td>
</tr>
</tbody>
</table>

Comparison of the change in bone density in g/cm² between baseline and 5 years of ALN confirmed that it exceeded the least significant change and was statistically significant. Is more than 5 years of alendronate therapy appropriate for this patient who is planning to continue an AI for another 3 years?

Management Approach and Rationale:

AIs are standard endocrine therapy for postmenopausal women with hormone receptor positive non-metastatic breast cancer. These medications inhibit peripheral estrogen production by blocking P450 CYP19-dependent aromatization of androgens to estrogens. Current guidelines recommend AI therapy for at least 5 years in this type of patient. However, AIs cause significant bone loss. In the pivotal ATAC trial, subjects randomized to the AI anastrazole experienced a BMD decrease of 6% in the spine and 7% in the hip after 5 years of treatment. Similar trials that studied letrozole and exemestane, two other AIs, reported similar results. As expected, clinical trials comparing AIs to tamoxifen have reported an increased fracture risk with AIs.

BPs preserve bone mass in women receiving AI therapy. In the 36-month ZO-FAST study, postmenopausal women with early stage hormone receptor positive breast cancer receiving letrozole were randomized to either immediate ZOL mg intravenously every 6 months or delayed ZOL that was administered if T-scores fell below -2.0 or if a fracture occurred during the study. Subjects in the immediate group had an average 1.6% increase in BMD at the total hip while subjects randomized to delayed treatment had a 4.2% loss of BMD at the total hip. A small number (0.4%) of subjects in the immediate ZOL group and none in delayed group were diagnosed with ONJ. However, this increase was not statistically significant. The SABRE trial studied the effects of risedronate on bone mass in patients receiving anastrazole. Subjects randomized to risedronate experienced a 1.8% increase in total hip BMD, while control subjects had a 1.1% decrease after 24 months.

A UK Expert Group was convened in 2008 to provide recommendations on the treatment of AI-related bone loss. This panel recommended BP treatment in the following patients: 1) age equal to or greater than 75; 2) a lumbar spine or hip T-score of < -2.0 at the initiation of AI therapy; 3) a known vertebral fracture at the initiation of AI therapy; 4) an annual rate of bone loss greater than 4% at the lumbar spine or total hip; and 5) a T-score equal to or less than -2.0 4 years after AI therapy.

A Task Force convened by the National Comprehensive Cancer Network recommended using the FRAX calculation tool, and that AI treatment to be considered a risk factor for “secondary osteoporosis,” a selection choice in the FRAX calculator. However, because many kinds of secondary osteoporosis affect FRAX via femoral neck BMD, clicking the secondary osteoporosis button on the FRAX tool.
In patients for whom bisphosphonate therapy is recommended, how long can treatment last? Should risk be stratified?

Case Study 6: Male Case

A 79 year old Caucasian man was referred for evaluation of osteoporosis after he suffered an ankle fracture. Evaluation revealed he had fractured his left hip 3 years prior after stepping off a curb; he had received no evaluation or treatment at that time. Comorbidities included hypertension, chronic kidney disease stage 3, neuropathy that affected his balance and gastro-esophageal reflux disease that was controlled with omeprazole. BMD at that time showed T-scores at the spine of -1.4, total hip of -2.0, femoral neck of -3.0, and distal 1/3 radius of -3.3, all compared with a male normative database. His estimated GFR was 44 mL/min, and he was started on risedronate. Follow-up BMD performed 2.5 years later revealed stable readings. A subsequent DXA performed at age 84 showed essentially the same BMD (done on the same machine by the same technologist with adequate quality control). His estimated creatinine clearance had dropped to 28 mL/min (Cockcroft-Gault equation), and he remained at risk for falling because of his neuropathy. His femoral neck T-score was -2.9 by the male normative database and -2.7 by the white female normative database. If he were an untreated patient, his FRAX 10 year MOF risk would be 18% and 10 year hip fracture risk 8.6%. His daughter accompanied him to clinic and raised the question of whether he would still require treatment for his skeletal health.

Management Approach and Rationale:

This is a patient who remains at high risk for fracture based on his prior fracture, femoral neck T-score, and poor balance due to neuropathy. His T-score is < -2.5 even by a female normative database, demonstrating that for white men with low BMD the difference in T-score calculation is small with the two different normative databases. This is not true for all men who fracture, with evidence from a study in Australia that a large proportion of men with fractures will actually have normal T-scores, based on the female database. There has been no improvement in this patient’s neuropathy, so he remains a fall risk. He has had a minimal response to risedronate based on the fact that his BMD has not decreased in 5 years. If he continues risedronate, he would be below the recommended estimated creatinine clearance specified in the package insert. Thus, in light of the fact that he does not have recurrent or latent infections, the decision was made change to denosumab 60 mg subcutaneously every 6 months. He will be briefly evaluated at every injection visit with a planned repeat DXA in 2 years. The patient’s calcium and vitamin D status were assessed at each visit to be sure that his intake was adequate. This is particularly important when considering drugs that may cause hypocalcemia, especially denosumab and zoledronic acid.

Take home message: Men fracture. Regardless of the normative database used in this case, the patient was at high risk for fracture. He had decreased renal function, thus the switch to a non-renally excreted drug.

APPENDIX II

Task Force Charges

Original charges to the task force were to:

- Create an algorithm based on the current evidence to aid health care providers in determining treatment options for osteoporosis patients who have been on bisphosphonate therapy for three-five years.
- Include in the algorithm, guidance on the use of specific bisphosphonates, as well as non-bisphosphonate and alternate therapies to osteoporosis treatment.
- Provide guidance on monitoring of patients after discontinuation and reinitiating of anti-fracture therapy.
- Identify the key questions that the scientific community should address, both in the short- and long-term to clarify future versions of the “expert opinion”.

Task Force Charges after revisions

SUBGROUP 1

In patients for whom bisphosphonate therapy is recommended, how long can treatment last? Should risk be stratified?

a. Are there differences amongst bisphosphonates? Should bisphosphonate therapy choices be based on factors other than cost? E.g., Alendronate (generic and cheap), Risedronate (becoming generic and cheap soon), Zoledronic acid.
b. How should clinicians follow patients on bisphosphonates? (Effectiveness)
c. If a BP is stopped when should resumption of therapy be considered?
d. If a BP is stopped, should another treatment be given instead? If so, what?

SUBGROUP 2

How should the potential harms of bisphosphonate therapy impact the duration of treatment?

a. What is the evidence that shorter duration of therapy or drug withdrawal may decrease risks incurred by long term bisphosphonate therapy?
b. Are there risk factors for the harms of therapy?
c. How should clinicians follow patients on bisphosphonates? (Safety)
d. What are other harms of BPs therapies, and of alternate therapies (Safety)

APPENDIX III

Methodology for the Literature Search

Three parallel systematic literature searches were implemented on the following terms: randomized controlled trials with long term bisphosphonates, bisphosphonates and drug holidays, and bisphosphonates and guidelines. The three searches were constructed, conducted with input and oversight from an expert medical librarian, and implemented by a research assistant at the American University of Beirut under supervision of one of the Task Force co-chairs (GE-HF). The databases searched included Ovid Medline, EmbASE, Cochrane and Medline. Each search was divided into main concepts. Each of the concepts was then searched on each database as such and also as synonyms or related terms to achieve a comprehensive literature review. The literature was implemented targeting the following keywords: diphosphonates (bisphosphonates is not a MeSH term, but is captured as such through MeSH), osteoporosis, randomized controlled trial, long term. Each of these keywords was searched on OVID Medline as MeSH terms and also as keywords utilizing synonyms or related terms to achieve a comprehensive literature review. The OVID Medline interface was utilized as it allows advanced searching for MeSH-terms, explode functions, keyword searching in specific fields such as title, abstract, subject headings, adjacency, and limits such as publication types, languages, in addition to using Boolean operators (and, or) and truncation, to identify as many relevant articles as possible. The search was done in November 2013 using Ovid MEDLINE(R) without Revisions1996 to November Week 3 2013. The same strategy was implemented for bisphosphonates and drug holidays and bisphosphonates and guidelines, randomized controlled trials with long term bisphosphonates. Titles and abstracts retrieved for each of three searches were reviewed by one co-chair (GEHF) and distributed to all task force members. Please refer to the Appendix II for a brief overview of the three searches, and Appendix V for full details. Additional relevant publications after Nov 2013, those detailed in the papers retrieved and available in authors’ libraries were also used.

Search 1: Randomized controlled trials with long term bisphosphonates. A systematic review of the literature was implemented targeting the following keywords: diphosphonates (bisphosphonates was not found as MeSH), osteoporosis, randomized controlled trial, long term. 2056 articles were duplicates therefore a total of 2290 hits were identified from Embase, PubMed, OVID Medline and Cochrane. Titles and Abstracts for these 2290 hits were screened, a total of 226 articles were retained by the first reviewer (Research Assistant). Of these a total of 51 articles were selected by the Task Force co-Chair.

Search 2: Bisphosphonates and drug holidays. A systematic review of the literature was implemented targeting the following keywords: diphosphonates (bisphosphonates was not found as MeSH), osteoporosis, drug holiday.106 articles were duplicates therefore a total of 1152 hits were identified from Embase, PubMed, OVID Medline and Cochrane. Titles and Abstracts for these 1152 hits were screened, a total of 226 articles were retained by the first reviewer (Research Assistant). Of these a total of 12 articles were selected by the Task Force co-Chair.

Search 3: Bisphosphonates and guidelines. A systematic review of the literature was implemented targeting the following keywords: diphosphonates (bisphosphonates was not found as MeSH), osteoporosis, guidelines, long term. 48 articles were duplicates therefore a total of 583 hits were identified from Embase, PubMed, OVID Medline and Cochrane. Titles and Abstracts for these 583 hits were screened, a total of 62 articles were retained by the first reviewer (Research Assistant). Of these a total of 6 articles were selected by the Task Force co-Chair.

APPENDIX IV

OVERVIEW OF MAIN STUDY FINDINGS FROM FLEX and HORIZON EXTENSION STUDIES

Permission to reproduce each of the below figures has been secured. The Table and Figure numbers are kept as they appeared in their respective original publication. Reference numbers to Tables and Figure in this Appendix is as they appear in the references to the Task Force document.

IVA-FLEX

Figure 1 Design of trials from which the study group is derived.

FIT = Fracture Intervention Trial; FLEX = FIT Long-Term Extension; BMD = bone mineral density; BTM = bone turnover markers.


Table 3: Incidence of Fracture by Treatment Group.

| Fractures       | Placebo, No. (%) (n = 437) | Pooled Alendronate, No. (%) (n = 662) | Relative Risk (95% Confidence Interval)*
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertebral</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morphometric</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morphometric</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Bone mineral density; CI, confidence interval; RR, relative risk.

Analyses of RR and assessment of interaction were done with unadjusted proportional hazards models. Parallel analyses of morphometric vertebral fracture did not show any significant trends for alendronate efficacy among subgroups.

Abbreviations: BMD, bone mineral density; CI, confidence interval; RR, relative risk.

*Analyses of RR and assessment of interaction were done with unadjusted proportional hazards models. Parallel analyses of morphometric vertebral fracture did not show any significant trends for alendronate efficacy among subgroups.

†Interaction between BMD as a continuous variable and treatment.

‡Interaction between prevalent vertebral fracture status and treatment.
Table 2: Continuing or Discontinuing ALN Treatment and Risk of Fractures Stratified by Baseline Presence of Vertebral Fracture and Femoral Neck T-Score.

<table>
<thead>
<tr>
<th>Femoral neck T-score at FLEX baseline</th>
<th>Nonvertebral</th>
<th>Morphometric vertebral</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pbo, No. (%)</td>
<td>Aln, No. (%)</td>
</tr>
<tr>
<td>NVF at FLEX baseline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>−2 &lt; FLEX FN T-score</td>
<td>333</td>
<td>14 (10.8)</td>
</tr>
<tr>
<td>−2.5 &lt; FLEX FN T-score ≤ −2</td>
<td>203</td>
<td>13 (15.9)</td>
</tr>
<tr>
<td>FLEX FN T-score ≤ −2.5</td>
<td>184</td>
<td>21 (28.0)</td>
</tr>
<tr>
<td>p Value for interactionf</td>
<td>.019</td>
<td></td>
</tr>
<tr>
<td>Vertebral fracture at FLEX baseline:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>−2 &lt; FLEX FN T-score</td>
<td>128</td>
<td>4 (8.2)</td>
</tr>
<tr>
<td>−2.5 &lt; FLEX FN T-score ≤ −2</td>
<td>108</td>
<td>13 (29.5)</td>
</tr>
<tr>
<td>FLEX FN T-score ≤ −2.5</td>
<td>138</td>
<td>18 (31.6)</td>
</tr>
<tr>
<td>p Value for interactionf</td>
<td>.60</td>
<td></td>
</tr>
</tbody>
</table>

Number of participants with at least one fracture in the FLEX placebo group.
bNumber of participants with at least one fracture in the FLEX ALN group (5 and 10 mg/day combined).
cRelative hazard estimated with Cox proportional hazard models for time to first fracture.
dOdds ratio estimated with logistic regression models.
fValues for tests of interaction. Relative risks were tested for multiplicative interaction with FN T-score as a continuous variable.


Figure 1: Design of Fracture Intervention Trial Long-term Extension (FLEX) Trial.

FIT indicates Fracture Intervention Trial.
Table 3: FLEX Baseline Bone Mineral Density (BMD), Bone Turnover Markers (BTMs), and Other Characteristics and Age-adjusted Risk of Fracture among Women Who Discontinued Alendronate Therapy.

A, By tertile of hip bone mineral density (BMD) at Fracture Intervention Trial Long-term Extension (FLEX) baseline. *P* for trend < .001 for total hip BMD and for femoral neck BMD. B, By tertile of bone turnover marker at FLEX baseline. *P* for trend = .18 for urinary type 1 collagen cross-linked N-telopeptide to creatinine concentration ratio (NTX/Cr) and = .40 for serum bone-specific alkaline phosphatase (BAP). C, By tertile of 1-year percent change in hip BMD. *P* for trend = .96 for total hip BMD and = .81 for femoral neck BMD. D, By tertile of 1-year percent change in bone turnover marker. *P* for trend = .91 for NTX/Cr and = .70 for BAP.

Abbreviations: BAP, bone-specific alkaline phosphatase; BMI, body mass index (calculated as weight in kilograms divided by height in meters squared); FLEX, Fracture Intervention Trial Long-term Extension; NTX/Cr, type 1 collagen cross-linked N-telopeptide to creatinine concentration ratio.

<table>
<thead>
<tr>
<th>Variables Measured at FLEX Baseline</th>
<th>Risk of Fracture, Relative Hazard Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Demographic and clinical characteristics</strong></td>
<td></td>
</tr>
<tr>
<td>Age, per 5-y increase, y</td>
<td>1.54 (1.26-1.85)c</td>
</tr>
<tr>
<td>BMI, per SD increase</td>
<td>1.10 (0.87-1.38)</td>
</tr>
<tr>
<td>Vertebral fracture</td>
<td>1.11 (0.71-1.75)</td>
</tr>
<tr>
<td>Previous nonspine fracture</td>
<td>1.24 (0.64-2.40)</td>
</tr>
<tr>
<td><strong>BMD, lowest tertile vs other 2, T score</strong></td>
<td></td>
</tr>
<tr>
<td>Total hip</td>
<td>1.87 (1.20-2.92)c</td>
</tr>
<tr>
<td>Femoral neck</td>
<td>2.17 (1.38-3.41)c</td>
</tr>
<tr>
<td><strong>BTMs, highest tertile vs other 2</strong></td>
<td></td>
</tr>
<tr>
<td>NTX/Cr, nmol/mmol</td>
<td>1.33 (0.84-2.10)</td>
</tr>
<tr>
<td>BAP, ng/mL</td>
<td>1.39 (0.89-2.17)</td>
</tr>
</tbody>
</table>

Abbreviations: BAP, bone-specific alkaline phosphatase; BMI, body mass index (calculated as weight in kilograms divided by height in meters squared); FLEX, Fracture Intervention Trial Long-term Extension; NTX/Cr, type 1 collagen cross-linked N-telopeptide to creatinine concentration ratio.

*With the exception of age, each variable was examined in a separate age-adjusted model.

*Any nonspine or clinical vertebral fracture occurring after the 1-year visit.

*Statistically significant association.
Figure 4. Incidence of fractures by treatment in the extension for morphometric vertebral fractures (A), nonvertebral fractures (B), and hip fractures (C).

The dashed lines indicate the incidence in the core trial by core treatment for the corresponding fracture types. For B and C, the percentages given are the event rate from the Kaplan–Meier estimate at month 36 in the extension (bars) or core study (dashed lines).
Table 2. Predictors of Morphometric Vertebral Fracture in Discontinuation Group (Z3P3) During Extension Study (Univariable Models).

<table>
<thead>
<tr>
<th>Factors at extension baseline</th>
<th>Odds Ratio (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age ≥75 y</td>
<td>1.33 (0.62, 2.86)</td>
<td>0.461</td>
</tr>
<tr>
<td>Weight ≥60 kg</td>
<td>2.13 (0.93, 4.85)</td>
<td>0.072</td>
</tr>
<tr>
<td>FN t-score as continuous variable</td>
<td>2.95 (1.46, 5.95)</td>
<td>0.003</td>
</tr>
<tr>
<td>TH t-score as continuous variable</td>
<td>2.47 (1.41, 4.32)</td>
<td>0.002</td>
</tr>
<tr>
<td>FN t-score as categorical (≤-2.5% of population)</td>
<td>3.32 (1.37, 8.05)</td>
<td>0.008</td>
</tr>
<tr>
<td>TH t-score as categorical (≤-25% of population)</td>
<td>3.99 (1.79, 8.92)</td>
<td>0.0007</td>
</tr>
<tr>
<td>Prevalent vertebral fracture</td>
<td>1.84 (0.77, 4.43)</td>
<td>0.173</td>
</tr>
<tr>
<td>Serum PNP &gt;21.3 ng/mL</td>
<td>1.18 (0.53, 2.66)</td>
<td>0.685</td>
</tr>
</tbody>
</table>

Factors during core trial
- Core Y3% change FN BMD <4.04: 0.90 (0.42, 1.94), 0.796
- Core Y3% change TH BMD <4.19: 1.45 (0.67, 3.13), 0.352
- Weight loss Yes: 1.23 (0.58, 2.63), 0.593
- Incident vertebral fracture Yes: 4.75 (1.35, 16.77), 0.015
- Incident nonvertebral fracture Yes: 0.43 (0.06, 3.26), 0.411
Table 3: Predictors of Nonvertebral Fracture in Discontinuation Group (Z3P3) During Extension Study (Univariable Models).

<table>
<thead>
<tr>
<th>Factors at extension baseline</th>
<th>Hazard Ratio (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age ≥75 y</td>
<td>1.32 (0.73, 2.39)</td>
<td>0.355</td>
</tr>
<tr>
<td>Weight ≤60 kg</td>
<td>1.21 (0.67, 2.18)</td>
<td>0.530</td>
</tr>
<tr>
<td>FN t-score as continuous variable</td>
<td>1.35 (0.80, 2.29)</td>
<td>0.256</td>
</tr>
<tr>
<td>Per −1</td>
<td>1.72 (1.15, 2.56)</td>
<td>0.008</td>
</tr>
<tr>
<td>TH t-score as categorical (≥55% of population)</td>
<td>1.32 (0.73, 2.40)</td>
<td>0.354</td>
</tr>
<tr>
<td>≤−2.5</td>
<td>1.64 (0.87, 3.10)</td>
<td>0.124</td>
</tr>
<tr>
<td>Prevalent vertebral fracture</td>
<td>Yes</td>
<td>2.96 (1.38, 6.34)</td>
</tr>
<tr>
<td>Serum PINP &gt;21.3 ng/mL</td>
<td>1.13 (0.61, 2.07)</td>
<td>0.699</td>
</tr>
</tbody>
</table>

Table 4. Absolute Risk of Morphometric Vertebral Fracture in Subgroups Defined by Combining Risk Predictors (Including All Combinations Representing at Least 1% of the Total Population or n > 10 People and at Least One Fracture in Each Group), by Increasing Level of Risk in Z3P3 Subgroups and in the Same Z6 Subgroups With NNT to Prevent One Morphometric Vertebral Fracture.

<table>
<thead>
<tr>
<th>FN t-score ≤−2.5 at Ext Baseline</th>
<th>TH t-score ≤−2.5 at Ext Baseline</th>
<th>Prevalent Vertebral Fracture at Ext Baseline</th>
<th>Incident Vertebral Fracture During Core</th>
<th>Incident Nonvertebral Fracture During Core</th>
<th>% in Subgroup (Total n in Subgroup)</th>
<th>Z3P3 % fx (n With fx/n in Z3P3 Subgroup)</th>
<th>Z6 % fx (n With fx/n in Z6 Subgroup)</th>
<th>NNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>16.1% (152)</td>
<td>2.8% (2/72)</td>
<td>1.3% (1/80)</td>
<td>65</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>12.7% (120)</td>
<td>3.1% (3/100)</td>
<td>1.8% (1/56)</td>
<td>75</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>25.3% (239)</td>
<td>3.8% (5/133)</td>
<td>2.8% (3/106)</td>
<td>108</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>14.7% (139)</td>
<td>7.7% (5/69)</td>
<td>2.7% (2/74)</td>
<td>20</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>7.1% (67)</td>
<td>11.5% (3/26)</td>
<td>2.4% (1/41)</td>
<td>11</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>12.2% (115)</td>
<td>12.9% (8/62)</td>
<td>5.7% (3/53)</td>
<td>14</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>1.2% (11)</td>
<td>16.7% (1/6)</td>
<td>0% (0/5)</td>
<td>6</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>1.2% (11)</td>
<td>66.7% (4/6)</td>
<td>0% (0/5)</td>
<td>2</td>
</tr>
</tbody>
</table>

APPENDIX V ALTERNATIVES TO BISPHOSPHONATES

Alternatives to BP therapy include nasal calcitonin, which is no longer approved for osteoporosis by the EMA, raloxifene, denosumab, teriparatide, or strontium ranelate. See Table for information on efficacy of osteoporosis approved medications by approval indication and site of fracture reduction.

The protective skeletal effects of all of these non-bisphosphonate agents are reversible upon discontinuation of the medication, and bone loss is expected to resume after the agent is stopped. Nasal calcitonin has been shown to reduce vertebral fractures by 36%, but there are no conclusive data showing a reduction in non-spine or hip fractures with this agent. Calcitonin is well tolerated with approximately 6-8% of treated patients noting nasal irritation, which is generally mild in nature. During trials of an oral preparation of calcitonin in men with osteoarthritis, concern was raised regarding a possible increased risk of prostate cancer. The EMA’s Committee has recommended limiting the use of calcitonin-containing medicines only for short-term treatment (hypercalcemia of cancer and Paget’s disease of bone) in light of concerns that long-term use is associated with an increased risk of cancer. After extensive review, the FDA has concluded there may be an increased absolute risk of malignancy of approximately 1%, but causality could not be established. Thus, calcitonin remains on the market in the U.S. with inclusion of a new safety warning, and recommendations that risks and benefits be discussed for each individual patient.
Raloxifene is the only FDA-approved selective estrogen receptor modulator approved for the treatment of osteoporosis and has been shown to reduce vertebral fractures by 30-35% with no effect demonstrated on hip or non-spine fractures. The combination of conjugated estrogens and bazedoxifene has been FDA-approved for prevention of osteoporosis. Raloxifene has also been shown to decrease the risk of breast cancer in high-risk individuals. Administered as a daily pill, raloxifene side effects include exacerbation of hot flashes and an increased risk of thrombo-embolic complications the latter is reflected by a black box warning for fatal stroke required by the FDA, but no such restriction was specified by the EMA.

Denosumab is administered as a subcutaneous injection every six months and reduces vertebral fractures by 68% and hip fractures by approximately 40%. Reported side effects include skin reactions such as eczema or rash and an approximately 1% increased risk of infections such as urinary tract infections, bronchitis, or erysipelas, but the incidence of infections, considered as adverse events, or serious adverse events, did not differ between the denosumab and placebo arms. Denosumab is a potent inhibitor of bone resorption, and both ONJ and AFFs have been reported during treatment with this agent. Incidence of these rare events during denosumab treatment appears similar to those seen with BP therapy, although there are no large studies to determine the relative incidence of these complications with denosumab versus BPs in patients with osteoporosis. There is evidence that patients who have been on BPs have a further increase in BMD when switched to denosumab, but effects on subsequent fracture risk are unknown. Teriparatide (parathyroid hormone (PTH) 1-34) reduces vertebral fractures by approximately 65% and non-vertebral fractures by approximately 50%. PTH (1-84) reduces vertebral fracture by approximately 58% with no effect demonstrated on non-vertebral fractures. As a daily subcutaneous injection, these are the only available anabolic osteoporosis therapies. PTH (1-84) is not available in the U.S. and was withdrawn from market in Europe. Teriparatide is limited to a total of two years use in an individual's lifetime. Reported side effects include local injection site reactions, nausea, hypercalcemia, and hypercalciuria. In animal studies, one rat strain, the Fischer 344 rat, was treated with high doses of teriparatide from birth developed osteosarcomas, but an increased incidence of this rare tumor has not been seen in humans treated with teriparatide, at least as measured by long-term surveillance studies.

Strontium ranelate is available outside of North America for the treatment of osteoporosis and has been shown to decrease vertebral fracture risk by 41% and non-vertebral fracture risk by 16%. In addition, in a subgroup analysis, hip fracture risk was decreased by 36% in women over age 74 years who had a femoral neck T-score < -3. However, there have been recent concerns about potential cardiovascular side effects supported by some but not all studies. In light of the above, and in its latest and final decision issued in March 2014, the EMA has restricted conditions of use of strontium ranelate to postmenopausal women with severe osteoporosis for whom treatment with other products approved for osteoporosis is not possible, due to contraindications or intolerance. Cardiovascular contraindications are in place and other precautions include a history of or predisposition to venous thromboembolism and impaired renal function. Rare serious Stevens-Johnson skin reactions have also been reported with strontium ranelate.

For detailed reviews on alternative osteoporosis therapies the reader is directed to published reviews. In women previously treated with oral bisphosphonates, switching to denosumab was associated with greater increases in BMD and suppression of turnover markers than continued intake of alendronate, risedronate, ibandronate, and comparison with zoledronic acid is on-going. However, no information on fracture occurrence after changing therapy is available.

References for Appendix

2. Schousboe JT, Fink HA, Lui LY, Taylor BC, Ensrude KE. Association between prior non-spine non-hip fractures or prevalent radiographic vertebral deformities known to be at least 10 years old and incident hip fracture. J Bone Miner Res.2006;21(10):1557-64.


