Organization-Based Taxi-Sharing: Demand, Service Design, and Policy Analysis

Maya Abou Zeid
American University of Beirut

Seminar at NYU, Abu Dhabi
May 22, 2016
Research Team

• Prof. Isam Kaysi (co-PI)
• Prof. Maya Abou Zeid (co-PI)
• Prof. Cynthia Myntti (project manager of Neighborhood Initiative)
• Dr. Hani Al-Naghi (PhD student – graduated)
• Zahwa Al-Ayyash (Master’s student – graduated)
• Alisar Aoun (graduate research assistant)
Outline

• Introduction
• Evaluation framework
• Demand models
• Service design
• Viability for operator
• Institutional support
• Conclusion
Introduction
Introduction

• Urban commuting challenges
 – High motorization rates / congestion
 – Parking shortage
 – Limited public transport services

• Large institutions in urban areas are major generators of traffic in their neighborhoods
Parking Provision

• It is widely recognized that building more parking is costly and promotes the role of the private car as a preferred mode of transport

<table>
<thead>
<tr>
<th>Cost of subsidizing transit</th>
<th>Cost of providing parking</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1.27 per eligible rider per month</td>
<td>$223 per month per space</td>
</tr>
</tbody>
</table>

→ Significantly lower cost of subsidizing transit service compared to building new parking spaces
Transport Demand Management

• Institutions need to consider strategies to reduce parking demand (and reliance on private autos)

• Transport demand management strategies include:
 – Compressed workweek
 – Pricing / disincentives / subsidies
 – Ridesharing / taxi-sharing
 – More affordable housing nearby
 – And others…

focus of this presentation
Shared-Ride Taxi: Concept

• A Shared-Ride Taxi (SRT) is a door-to-door vehicle that enables two or more individuals to be served simultaneously based on spatial and temporal matching.

• Organization-based: Customers are constituents of an organization.
Properties

• Door-to-door comfort of the private car
• Shared ride advantage of public transport
• Different modes and vehicles (taxi, minivan, etc.) may be used
• Technology-enabled (dynamic scheduling, reservations through web or SMS, location awareness through GPS, etc.)
• SRT involves deviation relative to direct trip
Concept of Deviation

- Deviation for person A = \((tt_{AB} + tt_{BC}) - tt_{AC}\)
- Generally, travelers are not willing to accept a large deviation \(\Rightarrow\) impose max. deviation constraint:
 \((tt_{AB} + tt_{BC}) - tt_{AC} \leq \text{Max. deviation}\)
SRT Is a Form of Ridesharing

Source: Chan and Shaheen (2012)
SRT Example: Google Shuttle Bus

• Corporate tech shuttles that transport company employees in the SF Bay area to work (Google, Facebook, Apple, Yahoo,...)

• Shuttle attributes:
 – Comfortable air-conditioned ride
 – Real-time location information
 – Wi-Fi
 – Bike racks

• Ridership:
 – Google: 6400 per day (Google website)
 – 47% of riders would drive if it weren’t for the shuttles (SF Municipal Transportation Agency)
The Case of the American University of Beirut (AUB)

• AUB is a private university with around 8000 students (from mostly wealthy families) and 4400 employees

• It is located in a dense and congested urban area in Ras Beirut
AUB Context (cont.)

Main Issues

• High reliance on the private car and parking shortage
 – AUB contributes about 21% of peak hour trips and 21% of carbon emissions in its neighborhood (Kassab, 2011)
 – AUB’s parking demand is nearly 3,000 external parking spaces in addition to the 1,105 parking spaces on campus (Aoun et al., 2013)

• Low quality public transport options with limited coverage outside Beirut
Public Transport in Beirut, Lebanon

- Jitneys (‘service’)
 - Unregulated by the government
 - No fixed stops/bus shelters
 - Poor quality and stigmatized image
 - Limited coverage outside the city

- Buses

- Minibuses
AUB Context (cont.)

Vision

• Main challenges:
 – How to apply public transport measures without existing public transport systems?
 – How to shift high-income users away from private, low-occupancy modes?

• A shared-taxi service for AUB students was identified as a promising TDM option that adapts the conventional public transport model to suit the target population (Aoun et al., 2013)
Shared-Taxi Evaluation Framework
Problem Statement

• The objective is to design an organization-based SRT and assess its feasibility
• Research focus: demand and service design
Evaluation Framework
(Al-Naghi, 2014)
Research Program

• Demand and policy analysis (Al-Ayyash, 2015; Al-Ayyash et al., 2016)
 – Econometric demand models for SRT in an organization-based context

• Service design and feasibility (Al-Naghi, 2014)
 – Vehicle routing algorithms and simulation of the operation of SRT for evaluation purposes

• Case study application to AUB
Demand Models
(Source: Al-Ayyash, 2015; Al-Ayyash et al., 2016)
Factors Influencing Ridesharing Demand

- In-vehicle time / deviation and waiting time
- Cost and incentives
- Availability of computer and cell phone messaging
- Safety and security (background checks)
- User awareness
- Perceived flexibility, convenience, and privacy
- Age, employment status, difficulty in walking, etc.

Source: Amey, 2010; Ben-Akiva et al., 1996; Benjamin et al., 1998; Chan and Shaheen, 2012; Deakin et al., 2010; Takeuchi et al., 2003
Demand Models

• **Aim**: assess the market share of SRT and elasticity w.r.t. time, fare, comfort, etc.

• Since the SRT isn’t an existing mode of transport, use **stated preference surveys** with hypothetical scenarios
Example of a Choice Scenario

<table>
<thead>
<tr>
<th>One-way fare</th>
<th>Change in travel time</th>
<th>Maximum allowable waiting time for pick-up & early drop-off</th>
<th>Maximum number of passengers sharing a ride in a vehicle (including you)</th>
<th>Mobile application for reservation and tracking & free Wi-Fi connectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,500 L.L.</td>
<td>10 min. more than your current travel time using your current travel mode</td>
<td>0 to 5 min</td>
<td>4 to 6 (Minivan)</td>
<td>Not available</td>
</tr>
</tbody>
</table>

How many days per week will you use the shared-ride taxi service?

- [] None
- [] 1
- [] 2
- [] 3
- [] 4
- [] 5

Dependent variable
Modeling Framework

• Disaggregate random utility choice model
 – 6 alternatives: 0, 1, 2, 3, 4, 5 days per week of using SRT
 – Utility of each alternative is function of:
 • Attributes: travel time difference, cost difference, max. allowed waiting time, vehicle type, and presence of Wi-Fi in vehicle/mobile app for reservation
 • Individual characteristics: Gender, attitude towards ride-sharing (latent)

• Model predicts the probability of each alternative
Framework: Hybrid Choice Model

Latent variable model:
ride-sharing attitude

Observed exogenous variables:
Socioeconomic characteristics and shared-ride taxi service attributes \(X \)

Observed choice from SP data \(y \)

Choice model: SRT usage

Delta utility \(\Delta U \)

Latent variables \(F \)

Attitudinal indicators \(I \)

I like sharing rides with others. I don’t mind if the Shared-Ride Taxi makes several stops...

Structural relationship

Measurement relationship
Main Findings

<table>
<thead>
<tr>
<th>Variable</th>
<th>Effect on SRT ridership</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel time deviation</td>
<td></td>
</tr>
<tr>
<td>Additional cost</td>
<td></td>
</tr>
<tr>
<td>Minivan (compared to taxi)</td>
<td></td>
</tr>
<tr>
<td>Max. allowed waiting time for pick-up/drop-off</td>
<td></td>
</tr>
<tr>
<td>Wi-Fi in vehicle</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>(for PT users)</td>
</tr>
<tr>
<td>Favorable ride-sharing attitude</td>
<td></td>
</tr>
</tbody>
</table>

- Model was estimated separately for students who commute by car and those who commute by public transport

- Car users are more time sensitive than PT users, while PT users are more cost sensitive than car users
Policy Analysis

Different SRT Service Types

Premium Service
- SRT One-way Fare
 - HIGH
- Delta Time
 - LOW
- SRT MAWT
 - LOW
- Vehicle Size
 - SMALL VEHICLE
- Free Wi-Fi Connectivity
 - AVAILABLE

Basic Service
- SRT One-way Fare
 - MEDIUM
- Delta Time
 - MEDIUM
- SRT MAWT
 - MEDIUM
- Vehicle Size
 - SMALL VEHICLE
- Free Wi-Fi Connectivity
 - UNAVAILABLE

Economy Service
- SRT One-way Fare
 - LOW
- Delta Time
 - HIGH
- SRT MAWT
 - HIGH
- Vehicle Size
 - MINIVAN
- Free Wi-Fi Connectivity
 - UNAVAILABLE
Policy Analysis (cont.)

SRT Ridership by Type

- Different service types can be offered to cater for different types of users.
Service Design

(Source: Al-Naghi, 2014)
Problem

- **Aim**: formation of vehicle tours based on spatial and temporal matching

Input
- Origins and destinations
- Schedule
- Mode of commute
- Socioeconomic characteristics
- Road network

Output
- Assignment of students on tours from different origins to a single destination, and then back (2-way)
- Number of cars needed and car occupancy
Optimization Problem

• Special case of Vehicle Routing Problems (VRP)
 – Capacitated vehicle routing problem with time windows

• **Objective function**: minimize total operating cost

• **Constraints**:
 – Deviation from direct path is below a certain threshold
 – Arrival/departure time is within a certain window
 – Vehicle capacity
Optimization Problem (cont.)

• Known to be NP-Hard, and thus exact algorithms cannot solve large problems in real time

• Known heuristic algorithms: Branch-and-Bound, Clarke and Wright's Savings, Nearest Neighbor (Greedy), Column Generation, Genetic, and the Ant Colony

• Research contribution: develop computationally efficient heuristics for large-scale problems
Algorithms

• Basic intuition: construct a tree rooted at the depot and solve the VRP on the tree

• Tree illustration:

• Spatial hierarchy of a tree is intuitive for the sequence of packing of individuals into vehicles
Algorithms (cont.)

- Algorithms developed consist of three stages:
 1. Cost matrix formation
 2. Tree formation
 - Construct **Hierarchical spanning trees**, rooted at the depot, from the cost matrix to structure the search of feasible ride matches.
 3. Tree traversal
 - Implement enumerated **tree traversal algorithm** to pack the feasible nodes in the tree into cars
Algorithms (cont.)

- Two heuristics are developed
 - **Proximity cluster tree (PCT)**
 - Idea: Groups students spatially based on the proximity of their residences to each other
 - **Minimum deviation tree (MDT)**
 - Idea: Groups students spatially based on minimum deviations (i.e. students on the way)
Algorithms (cont.): Tree Formation

• **Proximity cluster tree (PCT)**
 – Each node \(i\) is linked to its parent node \(j\), where \(j\) is the closest to \(i\) and is closer to the depot than \(i\).

• **Minimum deviation tree (MDT)**
 – Each node \(i\) is linked to its parent node \(j\), where \(j\) has the least route deviation for \(i\), and is closer to the depot than \(i\).
PCT and MDT Examples

<table>
<thead>
<tr>
<th>Type</th>
<th>Network Diagram</th>
<th>Chart Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Simulation Results for AUB

Sample

• Sample considered for simulation:
 – 2788 students who live in Greater Beirut and commute by motorized modes
Simulation Results for AUB (cont.)

Temporal Partitioning (One-Way)

- Hourly distribution of start/end of classes (of 2393 students who come on a Monday)

![Graph showing start and end times of classes]

- Each hourly group of students is solved separately
 - E.g. consider next the 8 AM group of students – potential SRT users: 574
Simulation Results for AUB (cont.)

Number of Required Cars (MDT)

- Higher fare \rightarrow Lower demand \rightarrow fewer cars needed
- Higher maximum deviation \rightarrow fewer cars needed and lower demand

- Fare is computed as a fraction of the Private Taxi fare.
Simulation Results for AUB (cont.)

Average Car Occupancy

• Average car occupancy increases with car capacity.

ST fare is taken as 40% of private taxi fare.
Computational Efficiency

• Small problems (24 nodes):
 – MDT/PCT: Less than 5 seconds
 – CPLEX: 20-60 minutes

• Large problems (~600 students):
 – MDT/PCT: Tree Derivation < 50 sec., Tree Traversal < 30 sec./scenario
Viability for Operators
Viability for Operators

• Two options may be considered:
 – **Option 1**: Commissioning the SRT service to one or more existing private taxi companies
 – **Option 2**: Commissioning the SRT service to a new and exclusive operator for AUB

• Testing several scenarios of maximum deviation and fare:
 – Option 2 was always infeasible *(large investment cost in vehicles, many of which remain idle in off-peak hours)*
 – Option 1 was feasible for fares exceeding 30% of private taxi fares and car capacities equal to 4
Options for Increasing the Viability for Operators

• **Reducing vehicle fleet size** by commissioning extra demand to private taxi operators

• **Denying requests** matching fewer than 3 passengers in the peak hours

• **Imposing a higher acceptable deviation** during peak hours to achieve full packing of the vehicles

• **Increasing the vehicle capacity** (at least during peak periods) using a heterogeneous fleet of cars and vans
Institutional Support
Institutional Context

• Institutional support is crucial for enhancing the viability of the SRT through:
 – Increasing awareness
 – Providing supporting policies (e.g. policies regarding parking subsidies)
 – Financial subsidy
Effect of Subsidy on Demand

• Using the estimated demand models, 2 levels of subsidy were tested for AUB:
 – 750 LL (0.5$)
 – 1,500 LL (1$) per one-way trip for a Basic service

• Subsidy increases demand by 5-20%
Financial Burden of Subsidy

• When a 1$ per one-way trip is offered:
 – The total monthly subsidy granted to every student is 24,000 LL ($16) – assuming three round trips to AUB per week
 – The annual subsidy burden would be approximately $290,000 (for around 1800 switching students).
Conclusion
SRT Impacts

• Students:
 – Cost savings for current car users and time savings for current PT users
 – Reduced parking needs and auto ownership (long term)

• Community:
 – Less congestion in the neighborhood by reducing auto dependency and vehicle miles traveled
 – Reduction in noise and air pollution

• Institution:
 – Reduced need for parking expansion
 – Supporting sustainable transport solutions
SRT Impacts (cont.)

• Reduction in peak hour trips and parking spaces:

<table>
<thead>
<tr>
<th>Fare</th>
<th>Peak Hour Trip Reduction</th>
<th>Mid-day Parking Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>30%</td>
<td>166</td>
<td>800</td>
</tr>
<tr>
<td>40%</td>
<td>123</td>
<td>592</td>
</tr>
<tr>
<td>50%</td>
<td>70</td>
<td>336</td>
</tr>
</tbody>
</table>

– Reduction in peak hour trips represents around 5-13% of the peak hour traffic volume on a busy street bordering the university

– Reduction in parking demand is about 11-27% of AUB’s demand
Important Factors for SRT Success

• Market studies
• Proper costing and incentives
 – E.g. Enoch et al. (2006) state that “DRT projects are often not realistically costed or designed with a full understanding of the market they are to serve”.
• Technology-based systems
• Phased operation
• Cooperation of different stakeholders
Research Contribution

• Comprehensive framework for organization-based SRT evaluation

• Development of computationally efficient routing heuristics for organization-based SRT:
 – unit demand, asymmetric network, narrow time windows at departure, common arrival time at destination, etc.

• Demand models for organization-based SRT, including qualitative attributes and attitudes

• Methodology can be used by other universities or institutions considering SRT
Extensions

- Feedback between demand and service design
- Testing other well-known VRP heuristics in the literature
- Service design and simulation for multiple institutions (many-to-many vehicle routing problem)
References

References (cont.)

