Serum 25-Hydroxyvitamin D Levels: Variability, Knowledge Gaps, and the Concept of a Desirable Range

Ghada El-Hajj Fuleihan,1 Roger Bouillon,2 Bart Clarke,3 Marlene Chakhtoura,1 Cyrus Cooper,4 Michael McClung,5 and Ravinder J Singh3

1Department of Internal Medicine, Calcium Metabolism and Osteoporosis Program, American University of Beirut, Beirut, Lebanon
2Department of Endocrinology and Laboratory Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
3Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic Foundation, Rochester, MN, USA
4MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
5Oregon Osteoporosis Center, Portland, OR, USA

ABSTRACT

Hypovitaminosis D is prevalent worldwide but proportions vary widely between regions, depending on genetic and lifestyle factors, the threshold to define deficiency, and accuracy of 25-hydroxyvitamin D (25OHD) assays used. Latitude, pollution, concealing clothing, sun exposure, gender, dietary habits, and lack of government regulation account for up to 50% in variations in serum 25OHD levels, whereas genetic polymorphisms in the vitamin D pathway account for less than 5%. Organizations/societies have developed guidelines for recommended desirable 25OHD levels and vitamin D doses to reach them, but their applicability across age groups and populations are still debated. This article and the accompanying online Supporting Information highlight sources of variations in circulating 25OHD levels, uncertainties and knowledge gaps, and analytical problems facing 25OHD assays, while keeping efficacy and safety data as the dominant factors when defining a desirable range for 25OHD levels. We propose a desirable range of 20 to 40 ng/mL (50 to 100 nmol/L), provided precise and accurate assays are used. Although slightly lower levels, 15 to 20 ng/mL, may be sufficient for some infants and adults, higher levels, 40 to 60 ng/mL, may still be safe. This desirable range allows physicians to tailor treatment while taking season, lifestyle, vitamin D intake, and other sources of variation into account. We reserve 25OHD measurements for at-risk patients, defined by disease or lifestyle, and the use of 25OHD assays calibrated against the recommended international standards. Most target groups reach desirable target levels by a daily intake of 400 to 600 IU for children and 800 IU for adults. A total daily allowance of vitamin D of up to 1000 IU in the pediatric age groups, and up to 2000 IU in adults, tailored to an individual patient risk profile, is probably safe over long durations. Additional data are needed to validate the proposed range and vitamin D doses, especially in children, pregnant women, and non-white populations. © 2015 American Society for Bone and Mineral Research.

KEY WORDS: DESIRABLE RANGE; VITAMIN D; KNOWLEDGE GAPS; VARIATIONS; ETHNICITIES; SAFETY; EFFICACY

Introduction

Vitamin D, a steroid hormone that controls over several hundreds of genes, amounting to around 3% of mouse and human genomes, impacts a wide range of molecular and cellular functions.1-5 Hyponutrition D is prevalent worldwide.1-6-11 A systematic review of 195 studies, involving over 168,000 participants from 44 countries, revealed considerable variation in mean 25OHD values. Around 37% of studies reported mean values below 20 ng/mL, proportions being higher in the Middle East and Asia.11 The beneficial effects of vitamin D on healing of rickets in children, and reducing fractures, when co-administered with calcium, and falls in elderly white populations, are, for the most part, undisputed.3,12-14 An exception is the U.S. Preventative Task Force report, which applies to younger subjects.15 A recent Cochrane systematic review of clinical trials revealed high-quality evidence for the beneficial effect of calcium and vitamin D, but not vitamin D alone, in reducing the risk of fractures. This applied to hip fracture risk, relative risk (RR) = 0.84 (95% CI, 0.74 to 0.96) from nine trials with 49,853 participants, and nonvertebral fractures RR = 0.86 (95% CI, 0.78 to 0.96) from eight trials with 10,380 participants.14

Vitamin D guidelines have been issued by major organizations worldwide:31 World Health Organization (WHO), the International Osteoporosis Foundation (IOF), the Institute of Medicine (IOM),16-17 the 2011 Endocrine Society (ES),18 the American

Received in original form February 12, 2015; revised form April 9, 2015; accepted April 16, 2015; accepted manuscript online April 20, 2015.
Address correspondence to: Ghada El-Hajj Fuleihan, MD, MPH, Calcium Metabolism and Osteoporosis Program, WHO Collaborating Center for Metabolic Bone Disorders, American University of Beirut Medical Center, P.O. Box: 113-6044/CB, Beirut, Lebanon. E-mail: gf01@aub.edu; lbgf01@aub.edu.lb
Additional Supporting Information may be found in the online version of this article.
DOI: 10.1002/jbmr.2536
© 2015 American Society for Bone and Mineral Research

Received in original form February 12, 2015; revised form April 9, 2015; accepted April 16, 2015; accepted manuscript online April 20, 2015.
Address correspondence to: Ghada El-Hajj Fuleihan, MD, MPH, Calcium Metabolism and Osteoporosis Program, WHO Collaborating Center for Metabolic Bone Disorders, American University of Beirut Medical Center, P.O. Box: 113-6044/CB, Beirut, Lebanon. E-mail: gf01@aub.edu; lbgf01@aub.edu.lb
Additional Supporting Information may be found in the online version of this article.
DOI: 10.1002/jbmr.2536
© 2015 American Society for Bone and Mineral Research
Vitamin D Physiology and Sources of Individual Variations in Vitamin D Levels

Normal physiology

Vitamin D is a pre-hormone derived from diet or skin (sun exposure) whose active metabolite 1,25-dihydroxyvitamin D \([1,25(OH)_{2}D]\) plays a critical role in calcium and mineral homeostasis, bone modeling, and bone remodeling. Skin is the major source of vitamin D, and the vitamin D metabolic pathway is illustrated in Supporting Fig. 1. It consists of three major steps mediated by hydroxylases, all of which are cytochrome P450 enzymes that function as oxidases. Of the circulating vitamin D metabolites, 25OHD is the most abundant form, has the longest half-life, approximately 2 to 3 weeks, and reflects both skin synthesis and dietary intake. It is thus the metabolite of interest relating vitamin D nutritional status to outcomes.

Genetic polymorphisms and environmental modulators of serum 25OHD levels

The serum concentration of 25OHD is under marked (23% to 80%) genetic influence as demonstrated in twin studies. The purpose of this work is to highlight sources of variations in circulating vitamin D levels, summarize the evidence provided by the IOM and ES to derive desirable levels, and outline knowledge gaps including analytical problems facing vitamin D assays, all important considerations when defining desirable levels. We have developed a conceptual framework to derive a desirable range for circulating 25OHD levels, allowing physicians to make enlightened decisions, taking these limitations into consideration.
Two genomewide studies confirmed results from the candidate gene approach and identified polymorphisms in key genes of the vitamin D pathway. These include: 25-hydroxylase (CYP2R1); 1-hydroxylase (CYP27B1); 24-hydroxylase (CYP24A1); and 7-dehydrocholesterol reductase (DHCR7); the D binding protein (DBP, also known as GC); and the vitamin D receptor (VDR) (see Supporting Fig. 1). Variants near genes involved in cholesterol synthesis, vitamin D hydroxylation, and transport were the most influential; however, even when combined only explain less than 5% of variations in 25OHD levels.

Conversely, environmental and lifestyle factors account for more substantial variations in vitamin D status or serum 25OHD levels, amounting to 3 to 15 ng/mL. Consistent predictors of low 25OHD levels are extremes of age, gender, pregnancy, UVB/sun exposure, season, pollution, clothing style, high BMI, lower socioeconomic status, skin pigmentation, race, and ethnicity, as detailed in Supporting Information, Appendix I.

Difficulties in predicting 25OHD level based on known genetic or lifestyle predictors

Despite characterization of genetic and lifestyle predictors of circulating serum 25OHD levels, it remains very difficult to interpret the specific impact of any one single factor because of the complex interaction between predictors, which in some instances may vary in opposing directions leading to counterintuitive findings. Modeling studies suggest that lifestyle factors combined can explain up to 50% of variability in 25OHD levels (Supporting Information, Appendix I). In a study of 664 elderly individuals vitamin D intake or supplements and baseline levels accounted for 24% of variability in serum 25OHD levels achieved. Although current vitamin D guidelines by IOM and ES take age, gender, and reproductive status into consideration, none has factored in lifestyle and genetics into their recommendations for desirable levels, with the exception of the Australian guidelines that take season into account.

The IOM and ES Recommended Desirable 25OHD Levels

Although the outcomes used to derive desirable 25OHD levels were similar for IOM and ES, the studies included and conclusions that were reached differed. Table 1 summarizes the prespecified outcomes and the main statements as they appeared in both reports, and in the Supporting Information, Appendix II provides evidence detailed in these reports. The data on the PTH-25OHD inflection point is quite controversial, with a wide range for the inflection point, and therefore cannot be used with confidence. The IOM recognized the limitations of calcium absorption studies quoted, including the lack of use of the gold standard methodology for several and the lack of a clear cutoff. It nevertheless concluded there was no clear evidence for further benefit in calcium absorption at a 25OHD level above 20 ng/mL. The ES only used one publication that combined two studies with overlap in study subjects, neither of which used the gold standard method to assess absorption, and concluded a desirable level above 32 ng/mL (Table 1). The same histomorphometric study was referenced by both organizations. It revealed that 7 of 675 individuals (1%) who had a high osteoid volume/bone volume (above 2%) had a 25OHD levels between 20 and 30 ng/mL, but serum 25OHD was measured with a poor assay on postmortem drawn blood samples. The ES concluded that the desirable 25OHD level is 30 ng/mL, because no individual above this value had osteomalacia, whereas the IOM chose 20 ng/mL. The IOM Report recognized this challenge and opted to derive needed information from several fracture observational studies. As detailed in Table 1 and in the Supporting Information, Appendix II, these pointed to desirable levels ranging from 10 to 30 ng/mL. However, these studies are similarly limited by the fact that they used different approaches for showing significant reduction in fractures (linear versus logistic regression, using quartiles or one or more prespecified cutoffs for the latter), as well as different assays. The highest risk for fractures was in subgroups of subjects with a 25OHD level less than 16 ng/mL and up to 20 ng/mL, and the lowest risk for fracture in subjects with a 25OHD more than 25 ng/mL and up to 30 ng/mL, depending on the specific study (Table 1). ES used two meta-analyses of randomized controlled trials (RCTs) published by the same authors, with overlap in seven studies, that showed a significant reduction in the risk of vertebral and hip fractures, at mean 25OHD levels ≥42 ng/mL (Supporting Information, Appendix I). In addition to the challenges/limitations of the evidence summarized in Table 1 and Supporting Information Appendix II, the range of serum 25OHD levels specified in the individual studies was quite high in Table 1 and Supporting Information Appendix II. Finally, data in the pediatric age group, pregnant women and non-white populations was scarce.

Knowledge Gaps in Specific Age Groups and Populations

Vitamin D and pregnancy outcomes

Low levels of serum 25OHD are observed in pregnant women worldwide. Associations between low gestational 25OHD levels and maternal/offspring health outcomes include a higher risk of developing preeclampsia or having a Caesarian section in the mothers, a higher risk of preterm birth, a higher risk of being born small for gestational age (SGA), or a higher risk of having impaired skeletal parameters for the neonates, but findings were not consistent across studies. Systematic reviews and meta-analyses based on observational studies show an increased risk of gestational diabetes in pregnant women with low 25OHD levels (OR varying from 1.4 to 1.7), preeclampsia (OR varying between 1.8 and 2.8), SGA babies (OR between 1.5 and 1.9), whereas findings on Caesarian section rates were inconsistent. These findings are limited by the observational nature of studies, inconsistent adjustment for confounders, and heterogeneity in vitamin D cutoffs. Meta-analyses based on RCTs essentially revealed negative results. One that considered five RCTs showed an OR for low vitamin D levels of 1.2 (95% CI: 0.7–2.1) for Caesarian sections. DESIRABLE SERUM 25-HYDROXYVITAMIN D LEVEL 1121
Table 1. The IOM and ES Justification for the Recommended Desirable 25OHD Level

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. PTH inflection point</td>
<td>“Review of the literature does not show widespread agreement on a plateau of serum PTH level consistent with a serum 25OHD level of 75 nmol/L. In most cases, serum PTH level reaches a plateau at different levels of serum 25OHD varying between 37.5 and 125.0 nmol/L.”</td>
</tr>
<tr>
<td>25OHD level (ng/mL)</td>
<td>Mean/median 25OHD level range in studies: 11.26–35.2 (SD range: 5.2–15.5)c Mean/median 25OHD level range in above studies: 15–30.4 (SD range: 9–13.2)c</td>
</tr>
<tr>
<td>2. Vitamin D–calcium absorption relationship</td>
<td>“For both children and adults there was a trend toward maximal calcium absorption between serum 25OHD levels of 30 and 50 nmol/L, with no clear evidence of further benefit above 50 nmol/L.”</td>
</tr>
<tr>
<td>25OHD levels (ng/mL)c</td>
<td>Mean/median 25OHD level range in studies: in children: 20–33.2 (SD range: 7.8–17); in adults: 11.2–64 (SD range: 3.6–22)c</td>
</tr>
<tr>
<td>3. Osteomalacia in postmortem biopsies</td>
<td>“Data from the work of Priemel et al. (2010) have been used by the committee to support a serum 25OHD level of 50 nmol/L as providing coverage for at least 97.5 percent of the population.”</td>
</tr>
<tr>
<td>4. Rickets</td>
<td>“In the face of adequate calcium, the risk of rickets increases below a serum 25OHD level of 30 nmol/L and is minimal when serum 25OHD levels range between 30 and 50 nmol/L. Moreover, when calcium intakes are inadequate, vitamin D supplementation to the point of serum 25OHD concentrations up to and beyond 75 nmol/L has no effect.”</td>
</tr>
<tr>
<td>25OHD levels (ng/mL)</td>
<td>Mean/median 25OHD level range in studies: 3.2–27.6 (SD range: 2–15.6)</td>
</tr>
<tr>
<td>5. Bone mineral density</td>
<td>Infants (7 studies): “Inconsistent evidence for an association between serum 25OHD concentrations and BMC measures in infants.”</td>
</tr>
<tr>
<td></td>
<td>Children and adolescents (7 studies): Conflicting results on the association of 25OHD level and BMC or BMD.</td>
</tr>
<tr>
<td></td>
<td>Postmenopausal and elderly men (19 studies): “Based on the results from the observational studies, there is fair evidence to support an association between serum 25OHD levels and BMD or changes in BMD at the femoral neck. Specific circulating concentrations of 25OHD below which bone loss at the hip was increased ranged from 30 to 80 nmol/L.”</td>
</tr>
<tr>
<td>25OHD levels (ng/mL)c</td>
<td>Mean/median 25OHD level range: Infants: 2.4–37 (SD range: 1.6–20.8) Children and adolescents: 8.2–36.1 (SD range 2.4–30.8)</td>
</tr>
<tr>
<td>5. Bone mineral density</td>
<td>25OHD between 30 and 40 ng/ml “consistent with the threshold for hip and non-vertebral fracture prevention from a recent meta-analysis of double-blind randomized controlled trials (RCT) with oral vitamin D”</td>
</tr>
</tbody>
</table>
requirements for most people, findings from other studies suggested that levels of 50 nmol/L and higher were consistent with bone health. Given that causality has been established between changes in serum 25OHD levels and bone health outcomes, information from observational studies can be useful in determining the dose-response relationship.

Table 1. Continued

<table>
<thead>
<tr>
<th>25OHD levels (ng/mL)</th>
<th>Mean/median 25OHD level range in studies: 7.3–24.8 (SD range: 2.7–15.6)</th>
</tr>
</thead>
</table>

Mean 25OHD levels not available in the IOM or ES reports but derived from retrieving the full text of quoted studies.

Most recently, a systematic review of five observational ultrasound studies evaluated fetal bone size, with differing results depending on the fetal bone parameter assessed. Some but not all observational studies have demonstrated associations between maternal vitamin D status and offspring muscle skeletal parameters at birth or during childhood. These included measurements of knee to heel length in the neonate, and bone mass at age 9 and 20 years. Similarly, adjusted analyses based on 678 mother-child pairs from the prospective UK Southampton Women’s Survey revealed that maternal serum 25OHD concentration during pregnancy was positively associated with offspring height-adjusted hand grip strength at 4 years. Conversely, the Avon Longitudinal Study of Parents and Children in the UK that included 3960 mother-offspring pairs showed no relationship between maternal gestational vitamin D status and offspring bone mass. These findings directly contradict the same group’s earlier finding in the same cohort of a positive association between maternal gestational UVB exposure and offspring bone size, mineralization and density at age 9.9 years.

Most of the studies described herein were conducted in white women, women who have higher 25OHD than other ethnic groups, and findings may therefore not be applicable to other populations. A systematic review of first trimester normative 25OHD levels that included 18 studies across the world revealed mean levels ranging from 12 to 29 ng/mL in white women, and 6 to 17 ng/mL in non-Western women. Levels are particularly low in women from the Middle East, a region where neonatal rickets is 10 to 100-fold more common than in Western populations. The impact of supplementation of mother or infants in these high-risk populations remains largely unknown.

Despite the scarcity and low-quality evidence available to date, IOM recommends an recommended daily allowance (RDA) of 600 IU of vitamin D daily to pregnant women, whereas the WHO 2012 pregnancy vitamin D guidelines recommend against routine vitamin D supplementation. Vitamin D supplementation would probably have the most benefit in populations of low socioeconomic status countries, those with darker skin color, and in populations with a high prevalence of vitamin D deficiency.

In summary, there are very few data to support vitamin D supplementation in pregnancy, and high-quality research is needed, especially in high-risk populations/ethnic groups. We have identified 23 pregnancy clinical trials investigating the effect of vitamin D supplementation on maternal and neonatal outcomes; nine are completed and 14 are ongoing (ClinicalTrials.gov; accessed November 5, 2014). Supplementation started during first or second trimesters, and doses varied between 400 and 10,000 IU/day. The main primary outcomes were for maternal and neonatal 25OHD levels; other maternal and
neonatal outcomes were also assessed (Supporting Information, Appendix IIIa, b).

Vitamin D and bone health in children

Although the efficacy of vitamin D treatment in infants and children suffering from rickets is unequivocal, the effect of supplementation in improving bone mineral metabolism in instances of subclinical insufficiency in the pediatric age is unclear. Studies evaluating the relationship between 25OHD, PTH, and bone remodeling markers in this age group are limited by the powerful confounding effect of growth on bone modeling and remodeling. Numerous are the cross-sectional studies illustrating the direct correlation between vitamin D and BMD in the pediatric age groups, including studies from Asia, but few are the randomized trials investigating the beneficial effect of supplementation on skeletal health. In a meta-analysis, information from six studies, totaling 343 participants receiving placebo and 541 receiving vitamin D, was compiled. Vitamin D supplementation had no statistically significant effects on total body bone mineral content (BMC) or on bone mineral density (BMD) of the hip or forearm, and there was a trend to a small effect on lumbar spine BMD. In preplanned subgroup analyses, in which the mean 25OHD at entry was less than 14 ng/mL, there were significant increments in lumbar spine (LS) BMD and total body BMC. These findings were, in part, driven by data from a randomized double-blind controlled trial conducted in 179 Lebanese adolescent vitamin D–deficient girls, mean age 13 ± 2 years, and baseline vitamin D of 14 ± 8 ng/mL. Vitamin D at daily doses of 200 IU and 2000 IU improved lean mass and BMC at the hip. There was a trend for more substantial increments in a premenarchal subgroup, underscoring the critical impact of timing of supplementation in relationship to pubertal status, as had been previously noted.

In a randomized controlled trial of vitamin D, conducted in 2000 neonates in India, vitamin D administration at 35 μg/day (1400 IU/day) significantly increased standard deviation (Z) scores for weight, length, and arm circumference, and decreased the proportion of children with stunted growth at 6 months, but had no effect on death, hospitalization, inpatient or outpatient visits. Postmenarcheal girls from India, aged 14 to 15 years, with a mean 25OHD level below 10 ng/mL, and randomized to receive 300,000 IU of vitamin D2 quarterly, experienced a 1.9% greater increase in total body BMC, but only a 0.5% greater increase in LS BMD, findings that were not significant, possibly due to sample size (n = 50). In light of the scarce number of trials, the putative beneficial effect of vitamin D in high-risk but otherwise apparently healthy children and adolescents warrants further investigation. We have identified 44 trials, 12 completed and 25 ongoing, investigating the effect of vitamin D supplementation on pediatric outcomes (ClinicalTrials.gov; accessed November 5, 2014). Supplementation doses varied between 400 and 4000 IU/day, and the outcomes included bone remodeling indices, bone density, and markers of fuel metabolism, inflammation, and infection (Supporting Information, Appendix IVa, b).

Vitamin D and musculoskeletal health in non-white subjects

Asia and the Middle and Far East represent the regions with the highest prevalence of hypovitaminosis D and of obesity worldwide, but are also the least represented in terms of inclusion of subjects from these regions in major vitamin D trials. A recent review assessing the validity for defining a single global desirable level for 25OHD examined the ethnic composition of study participants in the large vitamin D fracture and fall trials. Eleven relevant meta-analyses on RCTs on vitamin D and fractures and nine meta-analyses on vitamin D and falls were retrieved. The overwhelming majority of randomized trials included in these meta-analyses were conducted in Western countries, with an anticipated predominance of white subjects. Ethnicity was only specified in three trials, all conducted in the United States, two on fractures and one on falls. The review also examined studies available for defining desirable levels in non-whites using surrogate outcomes for calcium metabolism. There were essentially no studies on intestinal calcium absorption or bone histomorphometry. The few that attempted to define a desirable 25OHD level using the 25OHD–PTH relationship resulted in a wide range or none at all, and none of these were population-based studies (Fig. 1).

Limited data from the United States reveals that lower 25OHD level may be sufficient to maintain skeletal health in blacks and that higher levels may even be harmful.

In summary, little is known today regarding the safety and efficacy of vitamin D supplementation on musculoskeletal parameters in non-white populations.

Vitamin D and nonclassical outcomes

Associations of low 25OHD with an ever expanding list of chronic diseases, cancer, and mortality have been reported but the evidence for a causal role of vitamin D on these nonclassical outcomes is lacking. Associations between polymorphisms in enzymes/proteins involved in the vitamin D pathway and several health outcomes are also beginning to emerge (Supporting Information, Appendix I). The evidence from large RCTs investigating the beneficial effect of vitamin D on nonclassical outcomes in whites, as well as all other ethnic groups, is missing. A recent review identified 15 ongoing large randomized trials evaluating the impact of high-dose vitamin D replacement on cardiovascular, renal, and hepatic health outcomes, and on survival in cystic fibrosis and chronic lymphocytic leukemia.

Vitamin D in Phase III osteoporosis registration trials

The majority, if not all, pivotal phase III randomized trials included intake of calcium and vitamin D as the standard of care in both placebo and intervention arms, and several excluded subjects with low vitamin D levels at screening. However, a careful scrutiny of the information provided in the relevant publications describing these trials, detailed in Table 2, reveals the scarcity of information available regarding the subjects’ vitamin D status at trial entry, the actual average dose of vitamin D taken, mean 25OHD level achieved, and type of vitamin D assay used in the few studies that measured 25OHD level after study entry. Thus, although the efficacy of the currently approved therapies is often stated to be in light of such supplemental use, it is not clear what the vitamin D nutritional status was in subjects included in these trials. Indeed, an entry criterion for vitamin D level was mentioned in only four of 26 trials, and baseline serum 25OHD level were reported in only four. One study specified both, and a vitamin D level was not measured at study completion in any of the reported trials.

To date, little is known about the vitamin D nutritional status in the majority of subjects enrolled in the registration trials for most U.S. Food and Drug Administration (FDA)-approved osteoporosis therapies.
<table>
<thead>
<tr>
<th>Reference (publication year)</th>
<th>Drug used</th>
<th>National or international</th>
<th>Entry 25D level criterion</th>
<th>Vitamin D dose used (IU daily)</th>
<th>Mean 25D levels at baseline</th>
<th>Mean 25D at follow-up</th>
<th>Assay type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watts and colleagues (90) (1990)</td>
<td>Etidronate</td>
<td>International</td>
<td>NS(^a)</td>
<td>None stated</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Liberman and colleagues (95) (1995)</td>
<td>Alendronate</td>
<td>International</td>
<td>NS(^b)</td>
<td>None stated</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Black and colleagues (90) (1993); Black and colleagues (96)</td>
<td>Alendronate</td>
<td>USA</td>
<td>NS(^c)</td>
<td>250</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Black and colleagues (93); Cummings and colleagues (95) (1998)</td>
<td>Alendronate</td>
<td>USA</td>
<td>NS(^c)</td>
<td>250</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Orwoll and colleagues (96) (2000)</td>
<td>Alendronate</td>
<td>International</td>
<td>>25 ng/mL</td>
<td>400–450</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Harris and colleagues (98) (1999)</td>
<td>Risedronate</td>
<td>International (North America)</td>
<td>NS(^d)</td>
<td>up to 500</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Orwoll and colleagues (97) (2003)</td>
<td>Teriparatide</td>
<td>International</td>
<td>NS(^e)</td>
<td>400–1200</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Raloxifene</td>
<td>International</td>
<td>NS(^f)</td>
<td>400–600</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Neer and colleagues (104) (2001)</td>
<td>Teriparatide</td>
<td>International</td>
<td>NS(^g)</td>
<td>400–1200</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Greenspan and colleagues (105) (2007)</td>
<td>PTH 1-84</td>
<td>International</td>
<td>NS(^h)</td>
<td>400</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Black and colleagues (93) (2007)</td>
<td>Zoledronic acid</td>
<td>International</td>
<td>NS(^i)</td>
<td>400–1200</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Lyles and colleagues (106) (2007)</td>
<td>Zoledronic acid</td>
<td>International</td>
<td>NS(^j)</td>
<td>400–800</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Orwoll and colleagues (107) (2010)</td>
<td>Zoledronic acid</td>
<td>International</td>
<td>>15 ng/mL</td>
<td>800–1000</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Cummings and colleagues (108) (2009)</td>
<td>Denosumab</td>
<td>International</td>
<td>>12 ng/mL</td>
<td>400–800</td>
<td>23 ng/mL</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Orwoll and colleagues (109) (2012)</td>
<td>Denosumab</td>
<td>International</td>
<td>>20 ng/mL</td>
<td>>800</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Meunier and colleagues (110) (2004)</td>
<td>Strontium ranelate</td>
<td>International</td>
<td>NS</td>
<td>400–800</td>
<td>NR</td>
<td>NR</td>
<td>RIA (Diasorin)</td>
</tr>
<tr>
<td>Regnier and colleagues (111) (2005)</td>
<td>Strontium ranelate</td>
<td>International</td>
<td>NS</td>
<td>400–800</td>
<td>28 ng/mL</td>
<td>NR</td>
<td>RIA (Diasorin)</td>
</tr>
<tr>
<td>Kaufman and colleagues (112) (2013)</td>
<td>Strontium ranelate</td>
<td>International</td>
<td>NS</td>
<td>800</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Silverman and colleagues (113) (2008)</td>
<td>Basodoxifene</td>
<td>International</td>
<td>NS(^g)</td>
<td>400–800</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Cummings and colleagues (115) (2010)</td>
<td>Lasofoxifene</td>
<td>International</td>
<td>NS</td>
<td>400–800</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Cummings and colleagues (114) (2008)</td>
<td>Tibolone</td>
<td>International</td>
<td>NS</td>
<td>400–800</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

\(^a\) Excluded patients taking >1000 IU vitamin D daily.
\(^b\) Excluded patients with osteomalacia.
\(^c\) Excluded patients with vitamin D deficiency.
\(^d\) Excluded vitamin D deficiency. Only subjects with daily calcium intake <1000 mg day (82% of patients) received supplements.
\(^e\) Severe vitamin D deficiency excluded.
\(^f\) Pharmacologic doses of cholecalciferol excluded.
\(^g\) If the serum 25-hydroxyvitamin D level was ≤15 ng/mL or if the level was not available, patients received a loading dose of either vitamin D3 or D2 (at a dose of 50,000 to 125,000 IU given orally or intramuscularly.

\(^h\) NS = not specified; NR = not recorded; RIA = radioimmunoassay.
Safety and Toxicity of Vitamin D Supplementation

Vitamin D toxicity and adverse health outcomes

Vitamin D toxicity is characterized by hypercalcemia concomitant with hypervitaminosis D, rather than by an absolute level of serum 25OHD. The reason is that hypercalcemia occurs at widely varying levels of 25OHD, although usually above 120 to 150 ng/mL. Patients may have levels of serum 25OHD above 100 ng/mL and up to 150 ng/mL without associated hypercalcemia. Vitamin D toxicity is generally rare in clinical practice in the modern era, despite use of increasingly higher doses of daily or intermittent vitamin D supplementation, and is usually the result of errors in manufacturing, formulation, or prescription, and more likely to be seen with large bolus doses (Supporting Information, Appendix I). This has been reported, both in children and adults, in the setting of an unrecognized intake that is several hundred-fold higher than allowed by the recommended daily allowance. The IOM report concluded that doses of vitamin D up to 10,000 IU/day are unlikely to be associated with toxicity in adults, whereas daily doses exceeding 50,000 IU/day for weeks to months are associated with hypercalcemia. The Drugs and Therapeutic Committee of the Pediatric Endocrine Society recently completed a review on the risk of vitamin D toxicity in children on supplementation, concluding that it was only noted at a total cumulative intake of 240,000 to 4,500,000 IU of vitamin D. Both the IOM Food and Nutrition Board and the European Food Safety Authority (EFSA) set the maximum upper limit (defined as the highest dose not expected to cause adverse risks in healthy individuals) of vitamin D intake at 4000 IU/day, a conservative estimate. For the pediatric age group, it is up to 2000 IU for EFSA, and between 1000 and 3000 IU for infants and children up to 8 years for IOM. For ES, the upper limit is up to 2000 IU in infants and 4000 IU in adults. These limits are mostly based on relatively short-term studies, and the long-term safety of such doses is unclear.

The prevalence of elevated serum 25OHD levels, exceeding 100 ng/mL, with or without hypercalcemia is rare, less than 1%, both in population-based and in laboratory-based databases. The increase in serum 25OHD with vitamin D supplementation varies inversely with the starting level, but the development of hypercalcemia and hypercalciuria were shown to be independent of vitamin D dose, with clear interindividual variations. The reasons behind the wide variability in both serum 25OHD and resulting hypercalcemia for any given amount of vitamin D are not completely clear. In addition to concerns related to hypercalcemia and its complications, hypervitaminosis D may increase the risk of important health both falls and fractures that occurred with one bolus dose of 500,000 IU of cholecalciferol. Associations with increased mortality have also been described in several publications, at high levels and at some low levels of vitamin D, with U-shaped or J-shaped curve modeling patterns (Supporting Information, Appendix I). However, the most recent systematic review and meta-analysis of 29 trials with 71,032 participants, revealed that the mortality estimate was not adversely affected by either vitamin D, or vitamin D plus calcium, RR = 0.97 (95% CI, 0.93 to 1.01).

Safe upper 25OHD range and safe upper limit for high doses

Based on the available information, it is difficult to define a uniformly safe upper range for serum 25OHD level that will prevent hypercalcemia in all patients. Such a range can be derived from the studies outlined in section above on vitamin D toxicity, where hypercalcemia was unlikely to occur at serum 25OHD levels below 100 ng/mL. In addition, one could base it on serum 25OHD levels in normal subjects with high sun exposure, such as lifeguards, or natives living in equatorial latitude with plentiful sunshine. The mean (SD) for such subjects has been shown to range between 28 and 68 (18) ng/mL in individuals from South Africa and are lower in those from Australasia. Summer sun exposure for 20 min in a bathing suit results in synthesis of the equivalent of 15,000 to 20,000 IU of vitamin D3, but this was not observed in a more recent study. Serum 25OHD of individuals with high sun-UVB exposure, such as tanners, surfers, and outdoor workers, range between 10 ng/mL to above 65 ng/mL (Fig. 2). Similarly, mean 25OHD levels in two tribes from Tanzania, 2° to 4° South of the equator, with dark Type IV skin, revealed mean 25OHD levels of 44 and 48 ng/mL, ranging from 23 to 68 ng/mL. Finally, a recent study showed that most black subjects living in equatorial or subtropical areas have mean serum 25OHD levels of around 30 ng/mL, with few getting up to the 50-ng/mL to 60-ng/mL range. Therefore, it seems than serum 25OHD levels of 40 to 60 ng/mL are about the maximal levels reached when healthy subjects with a skin pigmentation adapted to their environment are living in natural circumstances.
Assay Variations, Impact on Care, and the Vitamin D Standardization Program

Although serum 25OHD is the best index of nutritional vitamin D status, its measurement to define desirable vitamin D levels is limited by large variations incurred by the various methodologies used to date. Such variations by far exceed the differences in desirable 25OHD levels defined by IOM and ES.

Variability between methods and impact on patient care
The most common types of assays used today in clinical laboratories are the antibody-based methods that use a kit, the increasingly more popular rapid high-output automated platforms, and high-performance liquid chromatography (HPLC)-based methods with either UV or mass spectrometric (MS)-detection. Potential source of variability between assays include differences in method of vitamin D metabolite extraction from DBP; cross-reactivity to 25OHD3, 3-epi-25-OHD3, and other vitamin D metabolites, and matrix interferences. The wide variations between methods remains to be a significant problem, and is apparent from scrutinizing reports issued by the Vitamin D External Quality Assessment Scheme (DEQAS) (Fig. 3A), and as reported by investigators. Clinically, the wide differences in measured serum 25OHD levels within and between assays would result in underestimation or overestimation of the actual 25OHD level depending on the assay used and on the type of supplement used by the patient (vitamin D2 or vitamin D3). A study comparing 25OHD values obtained using an RIA and a platform fast assay in 494 patient samples revealed that serum values measured in parallel with both assays could vary between −38 and +19 ng/mL, a bias that was independent of the serum 25OHD level. The implications of such wide variability on the interpretation and comparison of trial results, systematic reviews, and meta-analyses, on the relevance and applicability of guidelines/recommendations, be it at the public health level or at the individual level in the clinics, are substantial.

Assay standardization and the Vitamin D Standardization Program
Challenges in all of the above assay methods are clear, and a high level of technical expertise is required for performing manual test and designing any vitamin D method. External proficiency testing schemes (USA), or external quality assessment schemes (UK), such as DEQAS, and the vitamin D quality assessment service offered by the College of American Pathologists (CAP), are primarily based on the methodology being used in the respective laboratories, and results obtained vary widely. Examination of the quarterly reports issued by DEQAS that are based on data received from around 1000 laboratories, measuring four unknown samples, reveal wide variations in the mean serum 25OHD level derived by each specific methodology for the same sample of 8 to 16 ng/mL (Fig. 3A). The histogram also reveals a consistent trend for the interassay differences between the mean for methodologies reported, varying between 2.5 and 16 ng/mL. The closest to target value were those values obtained by LC-MS/MS, followed by HPLC (DEQAS; Fig. 3A). The above-reported 25OHD levels derived with each methodology are based on means values obtained from a few dozen to several hundred laboratories, and underestimate variations on individual patient measurements. At present, there exist no practical regulated and reference procedures for clinical measurement of serum 25OHD level. The choice of a particular method by a laboratory more often depends on available expertise, economics, and profitability.

There is a pressing need for harmonization and standardization of vitamin D assays.
The Vitamin D Standardization Program (VDSP) is an international collaborative venture that was organized in 2010 by the Office of Dietary Supplements (ODS) of the National Institutes of Health. The goal of the VDSP is to promote standardized laboratory measurement of total 25OHD, in order to improve decision making to inform clinical and public health practice worldwide. It calibrates vitamin D measurements to National Institute for Standards and Technology (NIST) reference standards and does not mandate a specific analytic approach. VDSP targets an accuracy of ±5%, a goal that is hard to consistently achieve with any methodology to date. More recently, DEQAS has become an accuracy-based scheme, and results are assessed against those obtained by the NIST reference standards. Figure 3B shows that mean 25OHD values obtained for four circulated unknown samples with the various assay methodologies differ widely from the NIST standard for most methods. LCMS and HPLC were the only two methodologies that consistently approached an accuracy of ±10%, but neither fulfilled the desirable accuracy of ±5% on all four samples (Fig. 3B).

In conclusion, assay variability undermines pooling of results from different studies to define dose-response and desirable 25OHD levels. This is a major obstacle to developing evidence-based clinical guidelines and puts into question the applicability of desirable levels derived from means of studies, as currently applied, to the individual patient.

The Concept of a Desirable Range for Level and Dose
In summary, differences between the recommended desirable 25OHD level by IOM of 20 ng/mL, and ES of 30 ng/mL, and the doses to reach them, are best interpreted in the context of all challenges and limitations outlined above, sources of variability in vitamin D levels, and the target age group of interest. Furthermore, the above desirable levels were often based on mean 25OHD levels, with large SDs of 10 to 15 ng/mL, and on information relating mean 25OHD values to endpoints in studies conducted mostly in Western populations. The variations imposed by genetic differences may be the most modest, amounting to a mean of 3 to 4 ng/mL, whereas those incurred by environmental and lifestyle factors and assay differences vary between 5 and 15 ng/mL. Mean differences also underestimate variations between individual patients. Thus, the concept of a desirable range is needed; a range that takes into account efficacy and safety considerations, sources of variations, and incurred differences on both ends of the derived desirable range.

Desirable range for serum 25OHD level
We anchor the lower limit of the desirable range by taking into consideration efficacy data, based on serum 25OHD levels and musculoskeletal outcomes, and an upper limit considering efficacy and safety data. The beneficial effects on fall and fracture risk occurred at mean levels above 20 ng/mL with the upper confidence limits of about 40 ng/mL, with no additional
Fig. 3. Histogram for mean serum 25(OHD) level in nmol/L (A) and percent bias from NIST target values (B), for each of unknown samples prepared from serum donations, measured by participating laboratories, and as provided by the Vitamin D External Quality Assessment Scheme (DEQAS) report for the July 2014 cycle. (A) Each bar graph represents the specific method mean ± 1SD (for eg. LC-MS or HPLC) for serum 25OHD by each of the 10 different measurement methods, used by 989 participating laboratories for that cycle, as specified in the table below the figure, along with number of laboratory participants for each method (for eg, n=146 for LCMS). The ALTM stands for the altered mean, that is the mean derived from results provided by all 989 participating laboratories, and the target value stands for the corresponding reference value for each unknown sample using reference measurement procedures (RMP) developed by the National Institute of Standards and Technology (NIST) and Ghent University. The target value is the sum of 25OHD2, 25OHD3 and the 3epi-25OHD3 measured according to RMP by NIST. Reproduced with permission from DEQAS. For details on DEQAS see http://www.deqas.org or http://deqas.kpmd.uk (B) Each bar graph represents the specific method mean percent deviation from NIST standard for serum 25OHD by each of the different methods used by participating labs for that cycle. Only methods with 10 or more results returned are plotted. Reproduced with permission from Graham Carter, DEQAS.
benefit for any bone health outcome in subjects with serum 25OHD level above 40 ng/mL. Serum levels of up to 60 ng/mL are reached in healthy subjects exposed to natural sunlight in certain latitudes, but concerns regarding deleterious effects of levels above 50 to 60 ng/mL have been raised from observational studies. Patients with well-documented vitamin D toxicity usually have serum 25OHD levels above or well above 100 ng/mL. Thus, our proposed desirable range, set for now at 20 to 40 ng/mL, takes into account the currently available evidence, put in the context of common sources of variations and uncertainties, and avoids the use of a single cutoff. Although slightly lower levels (15 to 20 ng/mL) may be sufficient for some infants and adults, higher levels (40 to 60 ng/mL) may still be safe. Additional data would be needed to validate this range, especially in children, pregnant women and non-white populations.

The desirable range should be interpreted in individual patients in the context of specific assay used, season, sun exposure, and intake of vitamin D. For example, if an individual patient has a serum 25OHD level in the summer of 21 ng/mL, when measured with the most accurate assay, the patient’s real value would fall below the desirable range in the winter. Additional adjustments are needed for methods that systematically overestimate or underestimate the true values, using standardization and calibration information derived from VDSP.

Recommendations for serum 25OHD measurements

Both IOM(16) and ES(18) and several other societies and organizations, such as Osteoporosis Canada,(149) the National Osteoporosis Society in the UK,(150) AACE,(151) and the U.S. Preventive Task Force recommend against the routine measurement of serum 25OHD levels.(152) In light of the problem of assay variation, the assay cost, and the fact that healthy persons respond to the IOM recommended doses by raising serum 25OHD to desirable levels, we believe this is most appropriate approach. Testing should therefore be confined to patients at risk, including those with osteoporosis and other metabolic bone disorders or medical conditions, or on medications known to affect vitamin D metabolism, and conditions known to improve with vitamin D treatment. Measurements should be performed in laboratories with rigorous quality assurance protocols, partaking in external proficiency testing, such as the VDSP and DEQAS, and that are calibrated to NIST standards.

Recommended daily allowance and maximum daily allowed intake

Because routine measurement of serum 25OHD is not recommended, physicians are provided guidance on the recommended vitamin D intake to reach desirable vitamin D levels in over 97.5% of the population. Such recommendations run from as low as 200 IU/day in some European countries, to as much as 4000 to 10,000 IU/day, for the Vitamin D Council.(153) The recommended daily intake for adults is 600 to 800 IU for IOM,(16) USPTF,(15) and AACE(151), 1500 to 2000 IU for ES(18), 800 to 2000 IU for IOF,(153); and 800 to 1000 IU below age 50 years and 800 to 2000 IU for those over age 50 years for Osteoporosis Canada Updated guidelines.(149) The recommended daily intake for the pediatric age group beyond infancy is 600 IU for IOM,(16) 400 to 1000 IU for ES,(18) and none to 400 IU for EFSA(122). The differences between the IOM(16) and ES(18) is that the former targets nondiseased individuals of all ages in the United States and Canada only, whereas the ES addresses high-risk individuals. The latter definition of high risk would apply to certain populations, such as in the Middle East and Asia, where some of the lowest 25OHD levels are recorded. In such high-risk groups, dose requirements may indeed differ(154) as shown in dose-ranging RCTs conducted in the Middle East and Asia.(150) Specifically, RCTs using daily equivalent doses of up to 2000 IU in children from Lebanon, Iran, and India, and 4000 IU in adults from Japan and India for up to 1 year, failed to meet IOM RDA definition for vitamin D dose.(20,154,155) Because of the variability in the dose-response curve with vitamin D, the various modulators that may vary by season, age, BMI, and calcium intake, it is also difficult to determine a single recommended daily vitamin D dose, and certainly more so across populations and ethnicities.(20)

A dose of 400 to 600 IU/day for infants and children and 600 to 800 IU/day is sufficient for otherwise healthy Caucasian adults and elderly. In some populations with different risk stratification such as low baseline vitamin D status, obesity, or higher metabolic rate of vitamin D, higher levels may be needed (1000 and 2000 IU/day in children and adults, respectively) as to achieve the desirable target levels. These recommendations fall within the conservative upper limit level set by IOM. Meta-analyses and meta-regressions using results of ongoing randomized trials in pregnant women, children, and other ethnic groups, would help refine age-specific and ethnic-specific recommended doses, as has been done for European recommendations.(156,157)

Research Agenda

The number of vitamin D publications has exponentially risen over the last two decades, yet many questions linger, and debates continue. There is a pressing need for vitamin D assay standardization to derive a unified desirable vitamin D range that overcomes the major obstacle of assay performance. Evidence remains to be gathered to guide preventive practices at the public health level for several age and ethnic groups.

Areas of ongoing investigation, or needed investigations, to fill knowledge gaps include implementation of the VDSP and rigorous trials investigating:

1. Effect of vitamin D on maternal and fetal-neonatal outcomes;
2. Effect of vitamin D on musculoskeletal parameters in children and adolescents;
3. Effect of vitamin D on musculoskeletal outcomes in non-whites;
4. Effect of vitamin D on nonclassical outcomes in all ethnic groups;
5. Gene-environment interaction and impact of enzymatic polymorphisms on baseline levels and response to therapy to define desirable levels in various populations; and
6. Impact of genetic polymorphisms in vitamin D pathways on disease expression in various ethnic groups.

Disclosures

All authors state that they have no conflicts of interest.

Acknowledgments

This work was supported in part by the American University of Beirut Medical Resource Package Plan Funding mechanism. We thank Dr Neil Binkley and Dr Chris Sempos for their input and
discussions, and Mr Graham Carter for permission to reproduce DEQAS figures and providing raw data to plot percent bias from NIST standards. We also thank Mr Karim El-Firkh, and Mr Ali Hammoudi for their assistance in manuscript preparation. Special thanks to Ms Maya Rahme for completing the extensive searches on PubMed, and ClinicalTrial.Gov and for compiling appendices, tables, and References

Authors’ roles: GEHF developed the general concept for the review, and wrote the manuscript. All authors contributed to various sections of the manuscript and approved the final version.

References

41. Nassar N, Halligan GH, Roberts CL, Morris JM, Ashton AW. Systematic review of first-trimester vitamin D normative levels
42. Bodnar LM, Catov JM, Zmuda JM, et al. Maternal serum 25-
hydroxyvitamin D concentrations are associated with small-for-
1006.
43. Bodnar LM, Catov JM, Simhan HN, Holick MF, Powers RW,
Roberts JM. Maternal vitamin D deficiency increases the risk of
44. Merewood A, Mehta SD, Chen TC, Bauchner H, Holick MF.
Association between vitamin D deficiency and primary cesarean
45. Wei SQ, Ceely EW, Rana S, et al. First trimester vitamin D, vitamin D
46. Wei SQ, Audibert F, Hidiroglou N, et al. Longitudinal vitamin D
47. Leffelaar ER, Vrijkotte TG, van Eijsden M. Maternal early pregnancy
D level and pregnancy and neonatal outcomes: systematic
49. Bodnar LM, Platt RW, Simhan HN. Early-pregnancy vitamin D
2015;125(2):439–47.
50. Aghajari F, Nagulesapillai T, Ronksley PE, Tough SC, O’Beirne M,
Rabi DM. Association between maternal serum 25-hydroxyvitamin
D level and pregnancy and neonatal outcomes: systematic
review and meta-analysis of observational studies. BJM. 2013;346:f1169.
51. Poel YH, Vrijkotte TG, van Eijsden M. Maternal early pregnancy
vitamin D status in relation to fetal and neonatal growth: results of
the multi-ethnic Amsterdam Born Children and their Development
D and parathyroid hormone concentrations and offspring birth
53. Tabesh M, Salehi-Abargouei A, Esmaillzadeh A. Maternal vitamin D
status and risk of pre-eclampsia: a systematic review and meta-
54. Thorne-Lyman AL, Fawzi WW. Vitamin D during pregnancy and
pregnancy outcomes: a systematic review and meta-
55. Leffelaar ER, Vrijkotte TG, van Eijsden M. Maternal early pregnancy
56. Lawlor DA, Wills AK, Fraser A, Sayers A, Fraser WD, Tobias JH.
Association of maternal vitamin D status during pregnancy with
57. Sayers A, Tobias JH. Estimated maternal ultraviolet B exposure
influence on perinatal maternal and offspring skeletal development of the child. J Clin
58. World Health Organization (WHO). Guideline: Vitamin D supple-
apps.who.int/iris/bitstream/10665/85313/1/9789241504935_eng.
pdf.
59. Karras SN, Anagnostis P, Bill E, et al. Maternal vitamin D status in
pregnancy and offspring bone development: the unmet needs of
60. Winzenberg T, Powell S, Shaw KA, Jones G. Effects of vitamin D
supplementation on bone density in healthy children: systematic
review and meta-analysis. BMJ. 2011;342:c7254.
replacement on musculoskeletal parameters in school children; a
62. Lehtonen-Veromaa MK, Moetonen TT, Nuotio IQ, Irjala KM,
Leino AE, Wikari JS. Vitamin D and attainment of peak bone
mass among peripubertal Finnish girls: a 3-y prospective study. Am J Clin
63. Kumar GT, Sachdev HS, Chellani H, et al. Effect of weekly vitamin D
supplements on mortality, morbidity, and growth of low birth-
weight term infants in India up to age 6 months: randomised
controlled trial. BMJ. 2011;342:d2975.
64. Khadilkar AV, Sayyd MG, Sanwalka NJ, et al. Vitamin D
supplementation and bone mass accrual in underprivileged
65. International Osteoporosis Foundation. Asian Audit [Internet].
Nyon, Switzerland: International Osteoporosis Foundation; 2009
asi-an-audit.
66. International Osteoporosis Foundation. Middle East Africa Audit
[Internet]. Nyon, Switzerland: International Osteoporosis Founda-
iofbonehealth.org/middle-east-africa-audit.
vitamin D and clinical fracture risk in a multiethnic cohort of
women: the Women’s Health Initiative (WHI). J Bone Miner Res.
68. Holick MF. The vitamin D deficiency pandemic and consequences
69. Makariou S, Liberopoulos EN, Elisaf M, Challa A. Novel roles of
70. Bjelakovic G, Gluud LL, Nikolova D, et al. Vitamin D supple-
mentation for prevention of mortality in adults. Cochrane Database Syst
71. Pludowski P, Holick MF, Pilz S, et al. Vitamin D effects on
musculoskeletal health, immunity, autoimmunity, cardiovascular
disease, cancer, fertility, pregnancy, dementia and mortality—a
72. Seida JC, Mitrji J, Colmers IN, et al. Effect of vitamin d3
supplementation on improving glucose homeostasis and prevent-
ing diabetes: a systematic review and meta-analysis. J Clin
73. Pathak K, Soares MJ, Calton EK, Zhao Y, Hallett J. Vitamin D
supplementation and body weight status: a systematic review and
meta-analysis of randomized controlled trials. Obes Rev. 2014;15
74. Maalmi H, Ordonez-Mena JM, Schottker B, Brenner H. Serum 25-
hydroxyvitamin D levels and survival in colorectal and breast
cancer patients: systematic review and meta-analysis of prospec-

Sanderst KM, Stuart AL, Williamson EJ, et al. Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. JAMA. 2010;303(18):1815–22.

